Active Camera System for Object Tracking and Multi-view Observation

  • Takashi Matsuyama
  • Shohei Nobuhara
  • Takeshi Takai
  • Tony Tung

Abstract

Most of 3D video studios developed so far employ a group of static cameras, and hence the object movable space is subject to strict constraints to guarantee high resolution well-focused multi-view object observation. This chapter presents a multi-view video capture system with a group of active cameras, which cooperatively track an object moving in a wide area to capture high resolution well-focused multi-view video data. The novelty of the system rests in the cell-based object tracking and multi-view observation, where the scene space is partitioned into a set of disjoint cells, and the camera calibration and the object tracking are conducted based on the cells. To evaluate practical utilities of the cell-based object tracking and multi-view observation algorithm, the performance of the system implemented at Kyoto University is demonstrated. The last part of the chapter presents a practical process of designing a system for large scale sport scenes such as figure skating, which will expand new applications of 3D video.

Keywords

Hexagonal Arena Prefix Harness 

References

  1. 1.
    Davis, J., Chen, X.: Calibrating pan-tilt cameras in wide-area surveillance networks. In: Proc. of International Conference on Computer Vision, pp. 144–149 (2003) CrossRefGoogle Scholar
  2. 2.
    Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Proc. of European Conference on Computer Vision, pp. 311–326 (1998) Google Scholar
  3. 3.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  4. 4.
    International Skating Union: Special Regulations & Technical Rules. Single and Pair Skating and Ice Dance (2008). Rule 342 Required rinks Google Scholar
  5. 5.
    Jain, A., Kopell, D., Kakligian, K., Wang, Y.-F.: Using stationary-dynamic camera assemblies for wide-area video surveillance and selective attention. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 537–544 (2006) Google Scholar
  6. 6.
    Kitahara, I., Saito, H., Akimichi, S., Onno, T., Ohta, Y., Kanade, T.: Large-scale virtualized reality. In: CVPR2001 Technical Sketches (2001) Google Scholar
  7. 7.
    Lavest, J.M., Peuchot, B., Delherm, C., Dhome, M.: Reconstruction by zooming from implicit calibration. In: Proc. of International Conference on Image Processing, vol. 2, pp. 1012–1016 (1994) Google Scholar
  8. 8.
    Lavest, J.-M., Rives, G., Dhome, M.: Three-dimensional reconstruction by zooming. IEEE Trans. Robot. Autom. 9(2), 196–207 (1993) CrossRefGoogle Scholar
  9. 9.
    Li, M., Lavest, J.-M.: Some aspects of zoom lens camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 18(11), 1105–1110 (1996) CrossRefGoogle Scholar
  10. 10.
    Lu, C.-P., Hager, G.D., Mjolsness, E.: Fast and globally convergent pose estimation from video images. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 610–622 (2000) CrossRefGoogle Scholar
  11. 11.
    Luong, Q.-T., Faugeras, O.D.: Self-calibration of a moving camera from point correspondences and fundamental matrices. Int. J. Comput. Vis. 22, 261–289 (1997) CrossRefGoogle Scholar
  12. 12.
    Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8, 123–151 (1992) CrossRefGoogle Scholar
  13. 13.
    Mendonca, P., Cipolla, R.: A simple technique for self-calibration. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 637–663 (1999) Google Scholar
  14. 14.
    Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int. J. Comput. Vis., 7–25 (1999) Google Scholar
  15. 15.
    Sarkis, M., Senft, C.T., Diepold, K.: Calibrating an automatic zoom camera with moving least squares. IEEE Trans. Autom. Sci. Eng. 6(3), 492–503 (2009) CrossRefGoogle Scholar
  16. 16.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002) MATHCrossRefGoogle Scholar
  17. 17.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2006) Google Scholar
  18. 18.
    Sinha, S.N., Pollefeys, M.: Pan-tilt-zoom camera calibration and high-resolution mosaic generation. Comput. Vis. Image Underst. 103(3), 170–183 (2006) CrossRefGoogle Scholar
  19. 19.
    Szeliski, R., Kang, S.B.: Recovering 3D shape and motion from image streams using nonlinear least squares. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 752–753 (1993) CrossRefGoogle Scholar
  20. 20.
    Ukita, N., Matsuyama, T.: Real-time cooperative multi-target tracking by communicating active vision agents. Comput. Vis. Image Underst. 97, 137–179 (2005) CrossRefGoogle Scholar
  21. 21.
    Wada, T., Wu, X., Tokai, S., Matsuyama, T.: Homography based parallel volume intersection: Toward real-time reconstruction using active camera. In: Proc. of CAMP, pp. 331–339 (2000) Google Scholar
  22. 22.
    Yamaguchi, T., Yoshimoto, H., Matsuyama, T.: Cell-based 3D video capture method with active cameras. In: Ronfard, R., Taubin, G. (eds.) Image and Geometry Processing for 3-D Cinematography, pp. 171–192. Springer, Berlin (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Takashi Matsuyama
    • 1
  • Shohei Nobuhara
    • 1
  • Takeshi Takai
    • 1
  • Tony Tung
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversitySakyoJapan

Personalised recommendations