Biodegradable Polymers

Part of the Green Energy and Technology book series (GREEN)


In the recent years, bio-based and biodegradable products have raised great interest since sustainable development policies tend to expand with the decreasing reserve of fossil fuel and the growing concern for the environment. These polymers bring a significant contribution to the sustainable development in view of the wider range of disposal options with minor environmental impact. As a result, the market of these environmentally friendly materials is in rapid expansion, 10–20 % per year. Consequently, biodegradable polymers are the topics of much research. Biodegradable polymers can be mainly classified as agro-polymers (starch, chitin, protein…) and biodegradable polyesters [polyhydroxyalkanoates, poly(lactic acid)…]. These latter, also called biopolyesters, can be synthesized from fossil resources but main productions are obtained from renewable resources. This chapter intends to present these polymers regarding the synthesis, the structure, properties and their applications.


Starch Granule Biodegradable Polymer Biodegradable Polyester Plasticize Starch Amylose Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Narayan R (2001) Drivers for biodegradable/compostable plastics and role of composting in waste management and sustainable agriculture. Orbit J 1(1):1–9Google Scholar
  2. 2.
    Steinbuchel A (2003) Biopolymers, general aspects and special applications, vol 10. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Avella M, Bonadies E, Martuscelli E (2001) European current standardization for plastic packaging recoverable through composting and biodegradation. Polym Test 20(5):517–521Google Scholar
  4. 4.
    Van Tuil R, Fowler P, Lawther M, Weber CJ (2000) Properties of biobased packaging materials, biobased packaging materials for the food industry: status and perspectives. KVL, FrederiksbergGoogle Scholar
  5. 5.
    Fritz J, Link U, Braun R (2001) Environmental impacts of biobased/biodegradable packaging. Starch 53(3–4):105–109Google Scholar
  6. 6.
    Karlsson S, Albertsson A-C (1998) Biodegradable polymers and environmental interaction. Polym Eng Sci 38(8):1251–1253Google Scholar
  7. 7.
    Kaplan DL, Mayer JM, Ball D, McCassie J, Allen AL, Stenhouse P (1993) Fundamentals of biodegradable polymers. In: Ching C, Kaplan DL, Thomas EL (eds) Biodegradable polymers and packaging. Technomic Pub Co, Lancaster, pp 1–42Google Scholar
  8. 8.
    Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21(4):433–442Google Scholar
  9. 9.
    Rouilly A, Rigal L (2002) Agro-materials: a bibliographic review. J Macromol Sci Part C Polym Rev C42(4):441–479Google Scholar
  10. 10.
    Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335Google Scholar
  11. 11.
    Guilbot A, Mercier C (1985) The polysaccharides. In: Aspinall GO (ed) Molecular biology, vol 3. Academic Press Incorporation, New York, pp 209–282Google Scholar
  12. 12.
    Della Valle G, Buleon A, Carreau PJ, Lavoie PA, Vergnes B (1998) Relationship between structure and viscoelastic behavior of plasticized starch. J Rheol 42(3):507–525Google Scholar
  13. 13.
    Colonna P, Mercier C (1984) Macromolecular structure of wrinkled- and smooth-pea starch components. Carbohydr Res 126(2):233–247Google Scholar
  14. 14.
    Hizukuri S, Takeda Y, Yasuda M (1981) Multibranched nature of amylose and the action of debranching enzymes. Carbohydr Res 94(2):205–213Google Scholar
  15. 15.
    Hayashi A, Kinoshita K, Miyake Y, Cho CH (1981) Conformation of amylose in solution. Polym J 13(6):537–541Google Scholar
  16. 16.
    Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch-Starke 40(2):44–50Google Scholar
  17. 17.
    Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147(2):342–347Google Scholar
  18. 18.
    Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17(6):315–321Google Scholar
  19. 19.
    Van Soest JJG, Hulleman SHD, De Wit D, Vliegenthart JFG (1996) Crystallinity in starch bioplastics. Ind Crop Prod 5(1):11–22Google Scholar
  20. 20.
    Van Soest JJG, Essers P (1997) Influence of amylose-amylopectin ratio on properties of extruded starch plastic sheets. J Macromol Sci Part A-Pure Appl Chem 34(9):1665–1689Google Scholar
  21. 21.
    Jang JK, Pyun YR (1986) Effect of moisture content on the melting of wheat starch. Starch-Starke 48(2):48–51Google Scholar
  22. 22.
    Shogren RL (1992) Effect of moisture content on the melting and subsequent physical aging of cornstarch. Carbohydr Polym 19(2):83–90Google Scholar
  23. 23.
    Swanson CL, Shogren RL, Fanta GF, Imam SH (1993) Starch-plastic materials-preparation, physical properties, and biodegradability (a review of recent USDA research). J Environ Polym Deg 1(2):155–166Google Scholar
  24. 24.
    Tomka I (1991) Thermoplastic starch. Adv Exp Med Biol 302:627–637Google Scholar
  25. 25.
    Cooke D, Gidley MJ (1992) Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydr Res 227:103–112Google Scholar
  26. 26.
    Stevens DJ, Elton GAH (1971) Thermal properties of the starch/water system. Part I. Measurement of heat of gelatinisation by differential scanning calorimetry. Starch-Starke 23(1):8–11Google Scholar
  27. 27.
    Genkina NK, Wikman J, Bertoft E, Yuryev VP (2007) Effects of structural imperfection on gelatinization characteristics of amylopectin starches with A- and B-type crystallinity. Biomacromolecules 8(7):2329–2335Google Scholar
  28. 28.
    Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C-Polym Rev 44(3):231–274Google Scholar
  29. 29.
    Ollett AL, Parker R, Smith AC, Miles MJ, Morris VJ (1990) Microstructural changes during the twin-screw extrusion cooking of maize grits. Carbohydr Polym 13(1):69–84Google Scholar
  30. 30.
    Martin O, Averous L, Della Valle G (2003) In-line determination of plasticized wheat starch viscoelastic behavior: impact of processing. Carbohydr Polym 53(2):169–182Google Scholar
  31. 31.
    Della Valle G, Boche Y, Colonna P, Vergnes B (1995) The extrusion behaviour of potato starch. Carbohydr Polym 28(3):255–264Google Scholar
  32. 32.
    Vergnes B, Villemaire JP, Colonna P, Tayeb J (1987) Interrelationships between thermomechanical treatment and macromolecular degradation of maize starch in a novel rheometer with preshearing. J Cereal Sci 5:189Google Scholar
  33. 33.
    Orford PD, Parker R, Ring SG (1993) The functional properties of extrusion-cooked waxy-maize starch. J Cereal Sci 18(3):277–286Google Scholar
  34. 34.
    Sagar AD, Merrill EW (1995) Starch fragmentation during extrusion processing. Polymer 36(9):1883–1886Google Scholar
  35. 35.
    Baud B, Colonna P, Della Valle G, Roger P (1999) Macromolecular degradation of extruded starches measured by HPSEC-MALLS. In: Colonna P, Guilbert S (eds) Biopolymer science food and non food applications. Les Colloques de l’INRA, Paris, pp 217–221Google Scholar
  36. 36.
    Wang SS, Chiang WC, Yeh AI, Zhao B, Kim IH (1989) Kinetics of phase transition of waxy corn starch at extrusion temperatures and moisture contents. J Food Sci 54(5):1298–1301Google Scholar
  37. 37.
    Davidson VJ, Paton D, Diosady LL, Larocque G (1984) Degradation of wheat starch in a single screw extruder: characteristics of extruded starch polymers. J Food Sci 49(2):453–458Google Scholar
  38. 38.
    Davidson VJ, Parker R, Diosady LL, Rubin LT (1984) A model for mechanical degradation of wheat starch in a single-screw extruder. J Food Sci 49(4):1154–1169Google Scholar
  39. 39.
    Zeleznak KJ, Hoseney RC (1987) The glass transition in starch. Cereal Chem 64(2):121–124Google Scholar
  40. 40.
    Kalichevsky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ (1992) The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr Polym 18(2):77–88Google Scholar
  41. 41.
    Van Soest JJG, Knooren N (1997) Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J Appl Polym Sci 64(7):1411–1422Google Scholar
  42. 42.
    Forssell P, Mikkila J, Suortti T, Seppala J, Poutanen K (1996) Plasticization of barley starch with glycerol and water. J Macromol Sci Part A-Pure Appl Chem 33(5):703–715Google Scholar
  43. 43.
    Hulleman SHD, Kalisvaart MG, Janssen FHP, Feil H, Vliegenthart JFG (1999) Origins of B-type crystallinity in glycerol-plasticised, compression-moulded potato starches. Carbohydr Polym 39(4):351–360Google Scholar
  44. 44.
    Lourdin D, Coignard L, Bizot H, Colonna P (1997) Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer 38(21):5401–5406Google Scholar
  45. 45.
    Van Soest JJG, De Wit D, Tournois H, Vliegenthart JFG (1994) The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer 35(22):4722–4727Google Scholar
  46. 46.
    Gaudin S, Lourdin D, Forssell PM, Colonna P (2000) Antiplasticisation and oxygen permeability of starch-sorbitol films. Carbohydr Polym 43(1):33–37Google Scholar
  47. 47.
    Lourdin D, Della Valle G, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohydr Polym 27(4):261–270Google Scholar
  48. 48.
    Kalichevsky MT, Blanshard JMV (1993) The effect of fructose and water on the glass transition of amylopectin. Carbohydr Polym 20(2):107–113Google Scholar
  49. 49.
    Ollett AL, Parker R, Smith AC (1991) Deformation and fracture behaviour of wheat starch plasticized with glucose and water. J MaterSci 26(5):1351–1356Google Scholar
  50. 50.
    Shogren RL, Swanson CL, Thompson AR (1992) Extrudates of cornstarch with urea and glycols: structure/mechanical property relations. Starch-Starke 44(9):335–338Google Scholar
  51. 51.
    Lourdin D, Ring SG, Colonna P (1998) Study of plasticizer-oligomer and plasticizer-polymer interactions by dielectric analysis: maltose-glycerol and amylose-glycerol-water systems. Carbohydr Res 306(4):551–558Google Scholar
  52. 52.
    Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch-polycaprolactone. Polymer 41(11):4157–4167Google Scholar
  53. 53.
    Lourdin D, Bizot H, Colonna P (1997) Correlation between static mechanical properties of starch-glycerol materials and low-temperature relaxation. Macromol Symp 114:179–185Google Scholar
  54. 54.
    Lourdin D, Bizot H, Colonna P (1997) “Antiplasticization” in starch-glycerol films? J Appl Polym Sci 63(8):1047–1053Google Scholar
  55. 55.
    Godbillot L, Dole P, Joly C, Roge B, Mathlouthi M (2006) Analysis of water binding in starch plasticized films. Food Chem 96(3):380–386Google Scholar
  56. 56.
    Thiewes HJ, Steeneken PAM (1997) The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content. Carbohydr Polym 32(2):123–130Google Scholar
  57. 57.
    Lu TJ, Jane JL, Keeling PL (1997) Temperature effect on retrogradation rate and crystalline structure of amylose. Carbohydr Polym 33(1):19–26Google Scholar
  58. 58.
    Appelqvist IAM, Cooke D, Gidley MJ, Lane SJ (1993) Thermal properties of polysaccharides at low moisture: 1—An endothermic melting process and water-carbohydrate interactions. Carbohydr Polym 20(4):291–299Google Scholar
  59. 59.
    Averous L, Fauconnier N, Moro L, Fringant C (2000) Blends of thermoplastic starch and polyesteramide: processing and properties. J Appl Polym Sci 76(7):1117–1128Google Scholar
  60. 60.
    Van Soest JJG, Borger DB (1997) Structure and properties of compression-molded thermoplastic starch materials from normal and high-amylose maize starches. J Appl Polym Sci 64(4):631–644Google Scholar
  61. 61.
    Van Soest JJG, De Wit D, Vliegenthart JFG (1996) Mechanical properties of thermoplastic waxy maize starch. J Appl Polym Sci 61(11):1927–1937Google Scholar
  62. 62.
    Van Soest JJG, Hulleman SHD, De Wit D, Vliegenthart JFG (1996) Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydr Polym 29(3):225–232Google Scholar
  63. 63.
    Campbell NA, Reece JB, Mitchell LG (1999) Biology, 5th edn. Addison Wesley Longman, Menlo ParkGoogle Scholar
  64. 64.
    Rinaudo M (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31:603–632Google Scholar
  65. 65.
    Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 40:597–636Google Scholar
  66. 66.
    Atkins EDT (1985) Conformation in polysaccharides and complex carbohydrates. J Biosci 8:375–387Google Scholar
  67. 67.
    Minke R, Blackwell J (1978) The structure of a-chitin. J Mol Biol 120:167–181Google Scholar
  68. 68.
    Gardner KH, Blackwell J (1975) Refinement of the structure of b-chitin. Biopolymers 14:1581–1595Google Scholar
  69. 69.
    Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5(3):1046–1051Google Scholar
  70. 70.
    Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34(19):6527–6530Google Scholar
  71. 71.
    Peter MGPI (2002) Chitin and Chitosan from Fungi. In: Steinbüchel A (ed) Biopolymers, vol 6., Polysaccharides IIWiley-VCH, Weinheim, pp 123–157Google Scholar
  72. 72.
    Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosan. Trends Food Sci Technol 10(2):37–51Google Scholar
  73. 73.
    Ogawa K (1991) Effect of heating an aqueous suspension of chitosan on the crystallinity and polymorphs. Agric Biol Chem 55(9):2375–2379Google Scholar
  74. 74.
    Ogawa K, Yui T, Miya M (1992) Dependence on the preparation procedure of the polymorphism and crystallinity of chitosan membranes. Biosci Biotech Biochem 56:858–862Google Scholar
  75. 75.
    Epure V, Griffon M, Pollet E, Averous L (2011) Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohyd Polym 83(2):947–952Google Scholar
  76. 76.
    Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37(1):47–73Google Scholar
  77. 77.
    May CD (1990) Industrial pectins: Sources, production and applications. Carbohydr Polym 12(1):79–99Google Scholar
  78. 78.
    Zhang L, Zeng M (2008) Proteins as sources of materials. In: Belgacem M, Gandini A (eds) Monomers polymers and composites from renewable resources. Elsevier, Amsterdam, pp 479–493Google Scholar
  79. 79.
    Zhang JW, Chen F (2010) Development of novel soy protein-based polymer blends. Green Polym Chem: Biocatal Biomater 1043:45–57Google Scholar
  80. 80.
    Domenek S, Morel MH, Guilbert S (2004) Wheat gluten based biomaterials: environmental performance, degradability and physical modifications. Roy Soc Ch 295:443–446Google Scholar
  81. 81.
    Guillaume C, Gontard N, Guilbert S (2011) New packaging materials based on renewable resources: properties, applications, and prospects. In: Aguilera JM, Simpson R, Welti-Chanes J, Bermudez Aguirre D, Barbosa-Canovas G (eds) Food Engineering Interfaces. Springer, New York, pp. 619–630Google Scholar
  82. 82.
    Arvanitoyannis I, Psomiadou E, Nakayama A (1996) Edible films made from sodium caseinate, starches, sugars or glycerol.1. Carbohyd Polym 31(4):179–192Google Scholar
  83. 83.
    Ofokansi K, Winter G, Fricker G, Coester C (2010) Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 76(1):1–9Google Scholar
  84. 84.
    Averous L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem N, Gandini A (eds) Monomers, oligomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 433–450Google Scholar
  85. 85.
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84Google Scholar
  86. 86.
    Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172Google Scholar
  87. 87.
    Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) Melt polycondensation of l-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(l-lactic acid). J Polym Sci Part A: Polym Chem 38(9):1673–1679Google Scholar
  88. 88.
    Moon S-I, Lee C-W, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of l-lactic acid: an alternative route to poly(l-lactic acid) with high molecular weight. Polymer 42(11):5059–5062Google Scholar
  89. 89.
    Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci (Oxford) 27(1):87–133Google Scholar
  90. 90.
    Albertsson A-C, Varma IK (2002) Aliphatic polyesters: synthesis, properties and applications. Adv Polym Sci 157:1–40Google Scholar
  91. 91.
    Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Pure Appl Chem A32(4):787–796Google Scholar
  92. 92.
    Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci—Pure Appl Chem 33(5):585–597Google Scholar
  93. 93.
    Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stabil 59(1–3):145–152Google Scholar
  94. 94.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864Google Scholar
  95. 95.
    Steinbuchel A, Doi Y (2002) Biopolymers: polyesters III—applications and commercial products, vol 4. Wiley-VCH, WeinheimGoogle Scholar
  96. 96.
    Bigg DM (1996) Effect of copolymer ratio on the crystallinity and properties of polylactic acid copolymers. J Eng Appl Sci 2:2028–2039Google Scholar
  97. 97.
    Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59(1):37–43Google Scholar
  98. 98.
    Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219Google Scholar
  99. 99.
    Yasuniwa M, Iura K, Dan Y (2007) Melting behavior of poly(l-lactic acid): Effects of crystallization temperature and time. Polymer 48(18):5398–5407Google Scholar
  100. 100.
    Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66(8):1507–1513Google Scholar
  101. 101.
    Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39(7):1303–1310Google Scholar
  102. 102.
    Kranz H, Ubrich N, Maincent P, Bodmeier R (2000) Physicomechanical properties of biodegradable poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) films in the dry and wet states. J Pharm Sci 89(12):1558–1566Google Scholar
  103. 103.
    Ljungberg N, Andersson T, Wesslen B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci 88(14):3239–3247Google Scholar
  104. 104.
    Van Tuil R, Fowler P, Lawther M, Weber CJ (2000) Properties of biobased packaging materials. In: Biobased packaging materials for the food industry—status and perspectives. KVL, Frederiksberg, pp 8–33Google Scholar
  105. 105.
    Lehermeier HJ, Dorgan JR, Way JD (2001) Gas permeation properties of poly(lactic acid). J Membrane Sci 190(2):243–251Google Scholar
  106. 106.
    McCarthy SP, Ranganthan A, Ma W (1999) Advances in properties and biodegradabilility of co-continuous, immiscible, biodegradable, polymer blends. Macromol Symp 144:63–72Google Scholar
  107. 107.
    Bastioli C (1998) Biodegradable materials—present situation and future perspectives. Macromol Symp 135:193–204Google Scholar
  108. 108.
    Tuominen J, Kylma J, Kapanen A, Venelampi O, Itävaara M, Seppälä J (2002) Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact. Biomacromolecules 3(3):445–455Google Scholar
  109. 109.
    De Koning GJM (1993) Prospects of bacterial poly[(R)-3-hydroxyalkanoates]. Eindhoven University of Technology, EindhovenGoogle Scholar
  110. 110.
    Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53Google Scholar
  111. 111.
    Doi Y (1990) Microbial polyesters. Wiley, New YorkGoogle Scholar
  112. 112.
    Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliver Rev 53(1):5–21Google Scholar
  113. 113.
    Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144Google Scholar
  114. 114.
    Shogren R (1997) Water vapor permeability of biodegradable polymers. J Environ Polym Degr 5(2):91–95Google Scholar
  115. 115.
    Kotnis MA, O’Brien GS, Willett JL (1995) Processing and mechanical properties of biodegradable poly(hydroxybutyrate-co-valerate)-starch compositions. J Environ Polym Degr 3(2):97–105Google Scholar
  116. 116.
    Shogren RL (1995) Poly(ethylene oxide)-coated granular starch-poly(hydroxybutyrate-co-hydroxyvalerate) composite materials. J Environ Polym Degr 3(2):75–80Google Scholar
  117. 117.
    Ramkumar DHS, Bhattacharya M (1998) Steady shear and dynamic properties of biodegradable polyesters. Polym Eng Sci 38(9):1426–1435Google Scholar
  118. 118.
    El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly(3-hydroxyalkanoate) PHAs and their blends. Polym Test 21(6):665–674Google Scholar
  119. 119.
    Parikh M, Gross RA, McCarthy SP (1998) The influence of injection molding conditions on biodegradable polymers. J Inject Molding Technol 2(1):30Google Scholar
  120. 120.
    Dos Santos Rosa D, Calil MR, Fassina Guedes CdG, Rodrigues TC (2004) Biodegradability of thermally aged PHB, PHB-V, and PCL in soil compostage. J Polym Environ 12(4):239–245Google Scholar
  121. 121.
    Chiellini E, Solaro R (1996) Biodegradable polymeric materials. Adv Mater 8(4):305–313Google Scholar
  122. 122.
    Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6(2):580–586Google Scholar
  123. 123.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247Google Scholar
  124. 124.
    Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue I. Tissue engineering. Int J Biol Macromol 25(1–3):111–121Google Scholar
  125. 125.
    Bastioli C, Cerutti A, Guanella I, Romano GC, Tosin M (1995) Physical state and biodegradation behavior of starch-polycaprolactone systems. J Environ Polym Degr 3(2):81–95Google Scholar
  126. 126.
    Bastioli C (1998) Properties and applications of Mater-Bi starch-based materials. Polym Degrad Stab 59(1–3):263–272Google Scholar
  127. 127.
    Koenig MF, Huang SJ (1994) Evaluation of crosslinked poly(caprolactone) as a biodegradable, hydrophobic coating. Polym Degrad Stab 45(1):139–144Google Scholar
  128. 128.
    Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270(5632):76–78Google Scholar
  129. 129.
    Lee S-R, Park H-M, Lim H, Kang T, Li X, Cho W-J, Ha C-S (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8):2495–2500Google Scholar
  130. 130.
    Muller R-J, Witt U, Rantze E, Deckwer W-D (1998) Architecture of biodegradable copolyesters containing aromatic constituents. Polym Degrad Stab 59(1–3):203–208Google Scholar
  131. 131.
    Yokota Y, Marechal H (1999) Processability of biodegradable poly(butylene) succinate and its derivates. A case study. In: Biopolymer conference, Wurzburg, Germany, 24 Feb 1999Google Scholar
  132. 132.
    Fujimaki T (1998) Processability and properties of aliphatic polyesters, ‘Bionolle’, synthesized by polycondensation reaction. Polym Degrad Stab 59(1–3):209–214Google Scholar
  133. 133.
    Ratto JA, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R (1999) Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer 40(24):6777–6788Google Scholar
  134. 134.
    Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer W-D, Muller R-J (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44(2):289–299Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.LIPHT-ECPM, EAc(CNRS) 4379, Université de StrasbourgStrasbourg Cedex 2France

Personalised recommendations