Skip to main content

Integer Points Close to Smooth Curves

  • Chapter
  • 2418 Accesses

Part of the book series: Universitext ((UTX))

Abstract

Some number-theoretic problems involve the number of points with integer coordinates very near some smooth plane curves. This chapter introduces the basic results and some refinements of the theory. Some criteria are investigated and the theorem of Huxley and Sargos is studied in detail. In the section Further Developments, we prove a particular case of a general theorem given by Filaseta and Trifonov improving on the distribution of squarefree numbers in short segments. The dual problem of square-full numbers in short intervals is also investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Some authors also use the vocable lattice points.

  2. 2.

    For instance, the authors did not make use of Gorny’s inequality but proved a Landau–Hadamard–Kolmogorov like result similar to (5.20) using divided differences.

References

  1. Branton M, Sargos P (1994) Points entiers au voisinage d’une courbe plane à très faible courbure. Bull Sci Math 118:15–28

    MathSciNet  MATH  Google Scholar 

  2. Fogels E (1941) On the average values of arithmetic functions. Proc Camb Philos Soc 37:358–372

    Article  MathSciNet  Google Scholar 

  3. Filaseta M, Trifonov O (1992) On gaps between squarefree numbers II. J Lond Math Soc 45:215–221

    Article  MathSciNet  MATH  Google Scholar 

  4. Filaseta M, Trifonov O (1996) The distribution of fractional parts with application to gap results in number theory. Proc Lond Math Soc 73:241–278

    Article  MathSciNet  MATH  Google Scholar 

  5. Graham SW, Kolesnik G (1991) Van der Corput’s method of exponential sums. London math. soc. lect. note, vol 126. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Gorny A (1939) Contribution à l’étude des fonctions dérivables d’une variable réelle. Acta Math 71:317–358

    Article  MathSciNet  Google Scholar 

  7. Huxley MN, Sargos P (1995) Points entiers au voisinage d’une courbe plane de classe C n. Acta Arith 69:359–366

    MathSciNet  MATH  Google Scholar 

  8. Huxley MN, Sargos P (2006) Points entiers au voisinage d’une courbe plane de classe C n, II. Funct Approx Comment Math 35:91–115

    Article  MathSciNet  MATH  Google Scholar 

  9. Huxley MN, Trifonov O (1996) The square-full numbers in an interval. Math Proc Camb Philos Soc 119:201–208

    Article  MathSciNet  MATH  Google Scholar 

  10. Huxley MN (1996) Area, lattice points and exponential sums. Oxford Science Publications, London

    MATH  Google Scholar 

  11. Huxley MN (1999) The integer points close to a curve III. In: Győry et al. (eds) Number theory in progress, vol 2. de Gruyter, Berlin, pp 911–940

    Google Scholar 

  12. Huxley MN (2007) The integer points in a plane curve. Funct Approx Comment Math 37:213–231

    Article  MathSciNet  MATH  Google Scholar 

  13. Konyagin S (1998) Estimates for the least prime factor of a binomial coefficient. Mathematika 45:41–55

    MathSciNet  Google Scholar 

  14. Mandelbrojt S (1952) Séries Adhérentes, Régularisation des Suites, Applications. Gauthier-Villars, Paris

    MATH  Google Scholar 

  15. Richert HE (1954) On the difference between consecutive squarefree numbers. J Lond Math Soc 29:16–20

    Article  MathSciNet  MATH  Google Scholar 

  16. Roth KF (1951) On the gaps between squarefree numbers. J Lond Math Soc 26:263–268

    Article  MATH  Google Scholar 

  17. Shiu P (1980) On the number of square-full integers between successive squares. Mathematika 27:171–178

    Article  MathSciNet  MATH  Google Scholar 

  18. Srinivasan B-R (1962) On Van der Corput’s and Nieland’s results on the Dirichlet’s divisor problem and the circle problem. Proc Natl Inst Sci India, Part A 28:732–742

    MATH  Google Scholar 

  19. Trifonov O (2002) Lattice points close to a smooth curve and squarefull numbers in short intervals. J Lond Math Soc 65:309–319

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bordellès, O. (2012). Integer Points Close to Smooth Curves. In: Arithmetic Tales. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-4096-2_5

Download citation

Publish with us

Policies and ethics