Preimplantation Diagnosis for Chromosomal Disorders

  • Anver Kuliev


It is well known that chromosomal abnormalities originate predominantly from female meiosis. As demonstrated by DNA polymorphism studies performed in families with aneuploid spontaneous abortions or liveborn babies with trisomy syndromes, these abnormalities derive mainly from meiosis I [1–3]. It was suggested that the age-related increase of common trisomies is probably determined by the age-related reduction of meiotic recombination, resulting in premature separation of bivalents and chromosomal nondisjunction. Meiosis II errors were also postulated to derive from meiosis I, as a result of the increased meiotic recombination rate, which may lead to a separation failure of bivalents [4].


Robertsonian Translocation Preimplantation Development Uniparental Disomy Female Meiosis Single Blastomere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sherman SL, Peterson MB, Freeman SB, et al. Nondisjunction of chromosome 21 in maternal meiosis I: evidence for a maternal age-dependent mechanism involving reduced recombination. Hum Mol Genet. 1994;3:1529–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Hassold T, Merril M, Adkins K, Freemen S, Sherman S. Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am J Hum Genet. 1995;57:867–74.PubMedGoogle Scholar
  3. 3.
    Peterson MB, Mikkelsen M. Nondisjunction in trisomy 21: origin and mechanisms. Cytogenet Cell Genet. 2000;91:199–203.CrossRefGoogle Scholar
  4. 4.
    Lamb NE, Freeman S, Savage-Austin A, et al. Susceptible chiasmate configurations of chromosome 21 predispose to nondisjunction in both maternal meiosis I, and meiosis II. Nat Genet. 1996;14:400–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Pellestor F, Andreo B, Armal F, Humeau C, Demaille J. Mechanisms of non-disjunction in human female meiosis: the co-existence of two modes of malsegregation evidenced by the karyotyping of 1397 in-vitro unfertilized oocytes. Hum Reprod. 2002;17:2134–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Dyban A, Fredine M, Severova E, Cieslac J, Wolf G, Kuliev A, Verlinsky Y. Detection of aneuploidy in human oocytes and corresponding first polar bodies using FISH. Seventh International Conference on Early Prenatal Diagnosis. Jerusalem; 1994 (Abstract #97).Google Scholar
  7. 7.
    Verlinsky Y, Cieslak J, Freidin M, et al. Pregnancies following pre-conception diagnosis of common aneuploidies by fluorescent in-situ hybridization. Hum Reprod. 1995;10:1923–7.PubMedGoogle Scholar
  8. 8.
    Munné S, Daily T, Sultan KM, Grifo J, Cohen J. The use of first polar bodies for preimplantation diagnosis of aneuploidy. Hum Reprod. 1995;10:1014–120.PubMedGoogle Scholar
  9. 9.
    Dyban A, Fredine M, Severova E, et al. Detection of aneuploidy in human oocytes and corresponding first polar bodies by FISH. J Assist Reprod Genet. 1996;13:72–7.CrossRefGoogle Scholar
  10. 10.
    Pujol A, Boiso I, Benet J, et al. Analysis of nine chromosome probes in first polar bodies and metaphase II oocytes for the detection of aneuploidies. Eur J Hum Genet. 2003;11:325–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Birth of healthy children after preimplantation diagnosis of common aneuploidies by polar body FISH analysis. Fertil Steril. 1996;66:126–9.PubMedGoogle Scholar
  12. 12.
    Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Preimplantation diagnosis of common aneuploidies by the first and second polar body FISH analysis. J Assist Reprod Genet. 1998;15:285–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Prepregnancy genetic testing for common age-related aneuploidies by polar body analysis. Genet Test. 1998;1:231–5.CrossRefGoogle Scholar
  14. 14.
    Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Prevention of age-related aneuploidies by polar body testing of oocytes. J Assist Reprod Genet. 1999;16:165–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Verlinsky Y, Cieslak J, Ivakhnenko V, et al. Chromosomal abnormalities in the first and second polar body. Mol Cell Endocrinol. 2001;183:S47–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Verlinsky Y, Cieslak J, Kuliev A. High frequency of meiosis II aneuploidies in IVF patients of advanced maternal age. Reprod Technol. 2001;10:11–4.Google Scholar
  17. 17.
    Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak-Janzen G. Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online. 2011;22:2–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Gianaroli L, Magli MC, Ferraretti AP. The in vivo and in vitro efficiency and efficacy of PGD for aneuploidy. Mol Cell Endocrinol. 2001;183:S13–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Munne S. Preimplantation genetic diagnosis of numerical and structural chromosome abnormalities. Reprod Biomed Online. 2002;4:183–96.PubMedCrossRefGoogle Scholar
  20. 20.
    Preimplantation Genetic Diagnosis International Society (PGDIS). Guidelines for good practice in PGD: program requirements and laboratory quality assurance. Reprod Biomed Online. 2008;16:134–47.CrossRefGoogle Scholar
  21. 21.
    ESHRE Preimplantation Genetic Diagnosis (PGD) Consortium. Best practice guidelines for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod. 2011;26:14–46.CrossRefGoogle Scholar
  22. 22.
    Preimplantation Genetic Diagnosis International Society (PGDIS). 10th International congress on preimplantation genetic diagnosis. Reprod Biomed Online. 2010;20:S1–42.Google Scholar
  23. 23.
    Van Blercom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod, 2000;15:2621–33. Kuliev A, Verlinsky Y. Current feature of preimplantation genetic disgnosis. Reprod BioMed Online 2002;5:296–301.Google Scholar
  24. 24.
    Magli C, Capoti A, Resta S, et al Prolonged absence of meiotic spindles bybirefringence imaging negatively affects normal fertilization and embryo development. Reprod BioMed Online 2011;23:747–54.Google Scholar
  25. 25.
    Ebner T, Yaman C, Mose M, Sommergruber M, Feichtinger O, Tews G. Prognostic value of first polar body morphology on fertilization rate and embryo quality in itracytoplasmic sperm injection. Hum Reprod. 2000;15:427–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Balaban B, Urman B, Isiklar A, Alatas C, Aksoy S, Mercan R. The effect of polar body morphology on embryo quality, implantation and pregnancy rates. Fertil Steril. 2001;76(Suppl1):S8.Google Scholar
  27. 27.
    Miller KF, Sinoway CE, Fly KL, Falcone T. Fragmentation pf the polar body at the time of ICSI does not predict fertilization or early embryo development but may be associated with improved pregnancy and implantation. Fertil Steril. 2001;76(Suppl1):S201.CrossRefGoogle Scholar
  28. 28.
    Verlinsky Y, Munne S, Cohen J, et al. Over a decade of preimplantation genetic diagnosis experience – a multi-center report. Fertil Steril. 2004;82:292–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Magli MC, Gianaroli L, Crippa A, Grugnetti C, Ruberti A, Ferraretti AP. Causes of aneuploidy – polar body based PGD. Reprod Biomed Online. 2009;18 Suppl 3:S3.Google Scholar
  30. 30.
    Gianaroli L, Magli MC, Lappi M, Capoti A, Robles F, Ferraretti AP. Preconception diagnosis. Reprod Biomed Online. 2009;18 Suppl 3:S5.Google Scholar
  31. 31.
    Fragouli E, Escalona E, Guttieres Mateo C, et al. Comparative genomic hybridization of oocytes and first polar bodies from young donors. Reprod Biomed Online. 2009;19:228–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16:R203–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Lamb NE, Feingold E, Savage-Austin A, et al. Characterization of susceptible chiasma configura­tions that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet. 1997;6:1391–401.PubMedCrossRefGoogle Scholar
  34. 34.
    Kuliev A, Cieslak J, Verlinsky Y. Frequency and distribution of chromosomal abnormalities in human oocytes. Cytogenet Genome Res. 2005;111:193–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Angel R. First meiotic division nondisjunction in human oocytes. Am J Hum Genet. 1997;65:23–32.CrossRefGoogle Scholar
  36. 36.
    Gutierrez-Mateo C, Benet J, Colls P, et al. Aneuploidy study of human oocytes first polar body comparatice genomic hybridization anf metaphase II fluorescence in situ hybridization analysis. Hum Reprod. 2004;19:2859–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Fragouli E, Alfarawati S, Katz-Jaffe M, et al. Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril. 2009. doi: 10.1016/j.fertnstert.
  38. 38.
    Geraedts J, Montag M, Magli C, et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum Reprod. 2011;26:3172–80.CrossRefGoogle Scholar
  39. 39.
    Magli C, Montag M, Koster M, et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part II: technical aspects. Hum Reprod. 2011. doi: 10.1093/humrep/der295.
  40. 40.
    Gabriel AS, Thornhill AR, Ottolini CS, et al. Array comparative genomic hybridization on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. J Med Genet. 2011;48:433–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Hunt P, LeMaraire R, Embury P, Sheean L, Mroz K. Analysis of chromosome behaviour in intact mammalian oocytes: monitoring the segregation of a univalent chromosome during female meiosis. Hum Mol Genet. 1995;4:2007–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Munne S, Bahce M, Sandalinas M, et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online. 2004;8:81–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Colls P, Escudero T, Cekleniak N, Sadowy S, Cohen J, Munne S. Increased efficiency of preimplantation genetic diagnosis for aneuploidy by testing 12 chromosomes. Reprod Biomed Online. 2009;19:532–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Uher P, Baborova P, Kralickova M, Zech MH, Verlinsky Y, Zech N. Non-informative results and monosomies in PGD: the importance of a third round of re-hybridization. Reprod Biomed Online. 2009;18:530–46.Google Scholar
  45. 45.
    Munne S. Chromosomal status of human embryo. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Healthcare; 2007. p. 209–34.CrossRefGoogle Scholar
  46. 46.
    Munné S, Sandalinas M, Escudero T, Marquuez C, Cohen J. Chromosome mosaicism in cleavage stage human embryos: evidence of a maternal age effect. Reprod Biomed Online. 2002;4:223–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Sherman SH, Freeman SB, Allen EG, Lamb NE. Risk factors for nondisjunction of trisomy 21. Cytogenet Genome Res. 2005;11:273–80.CrossRefGoogle Scholar
  48. 48.
    Battaglia DE, Goodwin P, Klein NA, Soules MR. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod. 1996;11:2217–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Eichenlaub-Ritter U, Vogt E, Yiu H, Gosden R. Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online. 2002;5:117–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Chatzimeletiou K, Morrison EE, Prapas N, Prapas Y, Handyside AH. Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy. Hum Reprod. 2005;20:672–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Angel E, Antonarakis SE. Genomic imprinting and uniparental disomy in medicine: clinical and molecular aspects. New York: Willey Liss; 2002.Google Scholar
  52. 52.
    Abu-Amero S, Monk D, Apostolidou S, Stanier P, Moore G. Imprinted genes and their role in human fetal growth. Cytogenet Genome Res. 2006;113:262–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Nashmyth K, Peters JM, Uhlman F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science. 2000;288:1379–84.CrossRefGoogle Scholar
  54. 54.
    Yuan L, Liu J, Hoja M, Wilbertz J, Nordqvist K, Hoog C. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science. 2002;296:1115–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Mummert S, Lobanenkov V, Feinberg AP. Association of chromosome arm 16q loss with loss of imprinting of insulin-like growth factor-II in wilms tumor. Genes Chromosomes Cancer. 2005;43:155–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Fisher JM, Harvey JF, Morton NE, Jacobs PA. Trisomy 18: studies of the parent and cell division of origin and effect of aberrant recombination on nondisjunction. Am J Hum Genet. 1996;56:669–75.Google Scholar
  57. 57.
    Kuliev A, Cieslak J, Illkewitch Y, Verlinsky Y. Chromosomal abnormalities in a series of 6733 human oocytes in preimplantation diagnosis of age-related aneuploidies. Reprod Biomed Online. 2003;6:54–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Kuliev A, Verlinsky Y. Meiotic and mitotic nondisjunctions: lessons from preimplantation genetic diagnosis. Hum Reprod. 2004;10:401–7.CrossRefGoogle Scholar
  59. 59.
    Kim NH, Chung HM, Cha KY, Chung KS. Microtubule and microfilament organization in maturing human oocytes. Hum Reprod. 1998;13:2217–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Barrit J, Brenner C, Cohen J, Matt D. Mitochondrial DNA rearrangement in human oocytes and embryos. Mol Hum Reprod. 1999;5:927–33.CrossRefGoogle Scholar
  61. 61.
    Perez G, Flaherty S, Barry M, Matthews C. Preliminary observations of polar body extrusion and pronuclear formation in human oocytes using timeplapse video cinematography. Hum Reprod. 1997;12:532–41.CrossRefGoogle Scholar
  62. 62.
    Kahraman S, Kumpete Y, Sertyel S, et al. Pronuclear scoring and chromosomal status of embryos in severe male infertility. Hum Reprod. 2002;17:3193–200.PubMedCrossRefGoogle Scholar
  63. 63.
    Gianaroli L, Magli MC, Ferraretti AP, et al. Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil Steril. 2003;80:837–44.CrossRefGoogle Scholar
  64. 64.
    Munne S, Sandalinas M, Escudero T, et al. Some mosaic types increase with maternal age. Reprod Biomed Online. 2002;4:223–32.PubMedCrossRefGoogle Scholar
  65. 65.
    Silber S, Sadowy S, Lehahan K, Kilani Z, Gianaroli L, Munne S. High rate of chromosome mosaicism but not aneuploidy in embryos from karyotypically normal men requiring TESE. Reprod Biomed Online. 2002;4 Suppl 2:20.CrossRefGoogle Scholar
  66. 66.
    DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72:156–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Gicquel C, Gaston V, Maldenbaum J, et al. In vitro fertilization may increase the risk of Beckwith-Videmann syndrome related to the abnormal imprinting of the KCNQ1OT gene. Am J Hum Genet. 2003;72:1338–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Maher ER, Brueton LA, Bowdin SC, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40:62–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74:599–609.PubMedCrossRefGoogle Scholar
  70. 70.
    Halliday J, Oke K, Breheny S, Algar E, Amor JA. Beckwith-Wiedemann syndrome and IVF: a case–control study. Am J Hum Genet. 2004;75:526–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Lucifero D, Chaillet JR, Trasler M. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update. 2004;10:3–18.PubMedCrossRefGoogle Scholar
  72. 72.
    Verlinsky Y, Tur-Kaspa I, Cieslak J, Bernal A, Morris R, Taranissi M, Kaplan B, Kuliev A. Preimpalntation diagnosis for chromosomal disorders improves reproductive outcome of poor-prognosis patients. Reprod Biomed Online. 2005;11:219–25.PubMedCrossRefGoogle Scholar
  73. 73.
    Munne S, Morrison L, Fung J, et al. Spontaneous abortions are reduced after preconception diagnosis of translocations. J Assit Reprod Genet. 1998;15:290–6.CrossRefGoogle Scholar
  74. 74.
    Verlinsky Y, Kuliev A, editors. Preimplantation diagnosis of genetic disorders: a new technique for assisted reproduction. New York: Wiley Liss; 1993.Google Scholar
  75. 75.
    Munne S, Bahce M, Sadowy S, Cohen J. Case report: chromatid exchange and predivision of chromatids as other sources of abnormal oocytes detected by preimplantation genetic diagnosis of translocations. Prenat Diagn. 1998;18:1450–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Verlinsky Y, Kuliev A. Atlas of preimplantation genetic diagnosis. New York, London: Parthenon; 2000.Google Scholar
  77. 77.
    Verlinsky Y, Evsikov S. Karyotyping of human oocytes by chromosomal analysis of the second polar body. Mol Hum Reprod. 1999;5:89–95.PubMedCrossRefGoogle Scholar
  78. 78.
    Verlinsky Y, Cieslak J, Evsikov S, Galat V, Kuliev A. Nuclear transfer for full karyotyping and preimplantation diagnosis of translocations. Reprod Biomed Online. 2002;5:302–7.CrossRefGoogle Scholar
  79. 79.
    Kuliev A, Cieslak-Jansen J, Zlatoposlsky Z, Kirilllova I, Illlevitch Y, Verlinsky Y. Conversion and non-conversion approach to preimplantation diagnosis for chromosomal rearrangements in 475 cycles. Reprod Biomed Online. 2010;21:93–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Verlinsky Y, Evsikov S. A simplified and efficient method for obtaining metaphase chromosomes from individual human blastomeres. Fertil Steril. 1999;72:1–6.CrossRefGoogle Scholar
  81. 81.
    Willadsen S, Levron J, Munne S, et al. Rapid visualization of metaphase chromosomes in single human blastomeres after fusion with in-vitro matured bovine eggs. Hum Reprod. 1999;14:470–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Shkumatov A, Kuznyetsov V, Cieslak J, Ilkevitch VY. Obtaining metaphase spreads from single blastomeres for PGD of choromosomal rearrangements. Reprod Biomed Online. 2007;14:498–503.PubMedCrossRefGoogle Scholar
  83. 83.
    Tanaka A, Nagayoshi M, Awata Y, Mawatari Y, Tanaka I, Kusunoki H. Preimplantation diagnosis of repeated miscarriages due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4–6 cell stage embryo. Fertil Steril. 2004;81:30–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Cohen J, Wells D, Munné S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril. 2007;87:496–503.PubMedCrossRefGoogle Scholar
  85. 85.
    Evsikov S, Cieslak J, Verlinsky Y. Survival of unbalanced translocations to blastocyst stage. Fertil Steril. 2000;74:672–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Munné S, Sandalinas M, Escudero T. Outcome of premplantation genetic diagnosis of translocations. Fertil Steril. 2000;73:1209–18.PubMedCrossRefGoogle Scholar
  87. 87.
    Munne S, Cohen J, Sable D. Preimplantation genetic diagnosis for advanced maternal age and other indications. Fertil Steril. 2002;78:234–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Fisher J, Escudero T, Chen S, et al. Obstetric outcome of 100 cycles of PGD of translocations and other structural abnormalities. Reprod Biomed Online. 2002;4(Supplement 2):26.CrossRefGoogle Scholar
  89. 89.
    Cassel MJ, Munne S, Fung J, Weier HUG. Carrier-specific breakpoint-spanning DNA probes: an approach to preimplantation genetic diagnosis in interphase cells. Hum Reprod. 1997;12:2019–27.PubMedCrossRefGoogle Scholar
  90. 90.
    Scriven PN, Handyside AH, Mackie Ogilvie C. Cromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat Diagn. 1998;18:1437–49.PubMedCrossRefGoogle Scholar
  91. 91.
    Gianaroli L, Magli MC, Ferraretti AP, et al. Robertsonian and reciprocal translocations. Reprod Biomed Online. 2002;4 Suppl 2:26–7.CrossRefGoogle Scholar
  92. 92.
    Lim CK, Min JH, Song GJ, et al. Reliability of PGD with FISH analysis in reciprocal or Robertsonian translocation carriers. Reprod Biomed Online. 2002;4 Suppl 2:29.CrossRefGoogle Scholar
  93. 93.
    Van Assche E, Staessen C, Ogur G, et al. PGD for reciprocal and Robertsonian translocations in 41 treatment cycles. Reprod Biomed Online. 2002;4 Suppl 2:27.CrossRefGoogle Scholar
  94. 94.
    Traversa MV, Carey L, Leigh D. A molecular strategy for routine preimplantation genetic diagnosis in both reciprocal and Robertsonian translocation carriers. Hum Reprod. 2010;16:329–37.Google Scholar
  95. 95.
    Colls P, Escudero T, Fischer J, et al. Validation of array comparative genome hybridization for diagnosis of translocations in preimplantation human embryos. Reproductive BioMedicine Online, 2012;24:621–629.Google Scholar
  96. 96.
    Treff NR, Northrop LE, Kasabwala K, Su J, Levy B, Scott RT. Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril. 2011;95:1606–12.PubMedCrossRefGoogle Scholar
  97. 97.
    Treff NR, Tao X, Schileings W, Bergh PA, Scott RT, Levy B. Use of single nucleotide polymorphism microarrays to distinguish between balanced and normal chromosomes in embryos from a translocation carrier. Fertil Steril. 2011;96:e58–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Anver Kuliev
    • 1
  1. 1.Reproductive Genetics InstituteChicagoUSA

Personalised recommendations