Skip to main content

Simplifying and Optimizing Triangle Meshes

  • Chapter
Guide to Computational Geometry Processing

Abstract

Smoothing is only one of the processes we generally have to apply to acquired geometry. This chapter discusses several other important algorithms connected by virtue of being simple greedy processes where we improve the mesh by local changes to the mesh connectivity.

First, we discuss the popular scheme for mesh simplification due to Garland and Heckbert where edges are iteratively contracted according to a cost function stored in a priority queue. Next, we discuss various algorithms for improvement of meshes based on flipping an edge separating two triangles to the other diagonal of the quadrilateral formed by the two triangles. Greedy schemes may again be applied for mesh flip optimization, but we also consider the method of simulated annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. Comput. Graph. 26(2), 65–70 (1992)

    Article  Google Scholar 

  2. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)

    Article  Google Scholar 

  3. Yan, D.M., Liu, Y., Wang, W.: Quadric surface extraction by variational shape approximation. In: Geometric Modeling and Processing-GMP 2006, pp. 73–86 (2006)

    Chapter  Google Scholar 

  4. Kälberer, F., Nieser, M., Polthier, K.: QuadCover-surface parameterization using branched coverings. Comput. Graph. Forum 26(3), 375–384 (2007)

    Article  MATH  Google Scholar 

  5. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and interactive Techniques, pp. 209–216 (1997)

    Google Scholar 

  6. Zelinka, S., Garland, M.: Permission grids: practical, error-bounded simplification. ACM Trans. Graph. 21(2), 207–229 (2002)

    Article  Google Scholar 

  7. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108. ACM, New York (1996)

    Google Scholar 

  8. Garland, M.: Quadric-based polygonal surface simplification. Ph.D. thesis, Georgia Institute of Technology (1999)

    Google Scholar 

  9. Shewchuck, J.R.: Lecture notes on delaunay mesh generation. Technical report, UC Berkeley (1999). http://www.cs.berkeley.edu/~jrs/meshpapers/delnotes.ps.gz

  10. Dyn, N., Hormann, K., Kim, S.-J., Levin, D.: Optimizing 3d triangulations using discrete curvature analysis. In: Mathematical Methods for Curves and Surfaces, Oslo, 2000, pp. 135–146. Vanderbilt University, Nashville (2001)

    Google Scholar 

  11. Bærentzen, J.A.: Optimizing 3d triangulations to recapture sharp edges. Technical report, Technical University of Denmark, Informatics and Mathematical Modelling, Image Analysis and Computer Graphics (2006). http://www2.imm.dtu.dk/pubdb/p.php?4689

  12. Hoffmann, C.M.: Geometric and Solid Modeling. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schumaker, L.L.: Computing optimal triangulations using simulated annealing. In: Selected Papers of the International Symposium on Free-form Curves and Free-form Surfaces, pp. 329–345. Elsevier, Amsterdam (1993). doi:10.1016/0167-8396(93)90045-5

    Google Scholar 

  15. Paulsen, R.R., Baerentzen, J.A., Larsen, R.: Markov random field surface reconstruction. In: IEEE Transactions on Visualization and Computer Graphics, pp. 636–646 (2009)

    Google Scholar 

  16. Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP’04, pp. 185–192. ACM, New York (2004)

    Chapter  Google Scholar 

  17. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. AK Peters, Wellesley (2010)

    Google Scholar 

  18. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proc. ACM SIGGRAPH 93 Conf Comput Graphics and Proceedings of the ACM SIGGRAPH’93 Conference on Computer Graphics, pp. 19–25 (1993)

    Google Scholar 

  19. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 295–302. ACM, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Andreas Bærentzen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bærentzen, J.A., Gravesen, J., Anton, F., Aanæs, H. (2012). Simplifying and Optimizing Triangle Meshes. In: Guide to Computational Geometry Processing. Springer, London. https://doi.org/10.1007/978-1-4471-4075-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4075-7_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4074-0

  • Online ISBN: 978-1-4471-4075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics