Skip to main content

3D Digital Elevation Model Generation

  • Chapter
3D Imaging, Analysis and Applications

Abstract

This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    WGS84: World Geodetic Systems dating from 1984 and last revised in 2004.

  2. 2.

    The CORONA program started in 1956 as a series of American strategic reconnaissance satellites. CORONA mission 9031 launched on 27th Feb. 1962 and was the first satellite providing stereoscopic images of the Earth.

  3. 3.

    The terms ‘interior’ and ‘exterior’ are used in the DEM generation research community. In other research communities, such as computer vision, they are called ‘intrinsic’ and ‘extrinsic’ parameters, as discussed in Chap. 2.

  4. 4.

    ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer, an imaging instrument flying on Terra satellite launched in December 1999 as part of NASA’s Earth Observing System.

  5. 5.

    USGS: United States Geological Survey.

  6. 6.

    NASA: National Aeronautics and Space Administration.

  7. 7.

    SRTM: Shuttle Radar Topography Mission aimed to obtain DEMs on a near global scale from 56S to 60N.

References

  1. Abdelfattah, R., Nicolas, J.M.: Topographic SAR interferometry formulation for high-precision DEM generation. IEEE Trans. Geosci. Remote Sens. 40(11), 2415–2426 (2002)

    Google Scholar 

  2. Ackermann, F.: Digital image correlation: performance and potential application in photogrammetry. Photogramm. Rec. 11(64), 429–439 (1984)

    Google Scholar 

  3. Ackermann, F.: Airborne laser scanning—present status and future expectations. ISPRS J. Photogramm. Remote Sens. 54, 64–67 (1999)

    Google Scholar 

  4. Adams, J.C., Chandler, J.H.: Evaluation of LIDAR and medium scale photogrammetry for detecting soft-cliff coastal change. Photogramm. Rec. 17(99), 405–418 (2002)

    Google Scholar 

  5. Adi, K., Suksmono, A.B., Mengko, T.L.R., Gunawan, H.: Phase unwrapping by Markov chain Monte Carlo energy minimization. IEEE Geosci. Remote Sens. Lett. 7(4), 704–707 (2010)

    Google Scholar 

  6. Ahlberg, S., Soderman, U., Elmqvist, M., Persson, A.: On modeling and visualization of high resolution virtual environments using LIDAR data. In: Proc. 12th International Conference on Geoinformatics, pp. 299–306 (2004)

    Google Scholar 

  7. Ahokas, E., Yu, X., Oksanen, J., Hyyppa, J., Kaartinen, H., Hyyppa, H.: Optimization of the scanning angle for countrywide laser scanning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 115–119 (2005)

    Google Scholar 

  8. Arefi, H., Hahn, M.: A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanner data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 120–125 (2005)

    Google Scholar 

  9. ASTER GDEM Validation Team: ASTER Global DEM Validation Summary Report (2009)

    Google Scholar 

  10. Axelsson, P.: Processing of laser scanner data—algorithms and applications. ISPRS J. Photogramm. Remote Sens. 54(2–3), 138–147 (1999)

    Google Scholar 

  11. Baker, H.H., Binford, T.D.: A system for automated stereo mapping. In: Proceedings of the Symposium of the ISPRS Commission II, Ottawa, Canada (1982)

    Google Scholar 

  12. Baltsavias, E.P.: Airborne laser scanning: basic relations and formulas. ISPRS J. Photogramm. Remote Sens. 54, 199–214 (1999)

    Google Scholar 

  13. Baltsavias, E.P.: Airborne laser scanning: existing firms and other resources. ISPRS J. Photogramm. Remote Sens. 54, 199–214 (1999)

    Google Scholar 

  14. Baltsavias, E.P.: A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 54, 83–94 (1999)

    Google Scholar 

  15. Bao, Y., Li, G., Cao, C., Li, X., Zhang, H., He, Q., Bai, L., Chang, C.: Classification of LIDAR point cloud and generation of DTM from LIDAR height and intensity data in forested area. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVII(3/W19), 313–318 (2008)

    Google Scholar 

  16. Bartels, M., Wei, H.: Segmentation of LIDAR data using measures of distribution. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(7), 426–431 (2006)

    Google Scholar 

  17. Bartels, M., Wei, H.: Threshold-free object and ground point separation in LIDAR data. Pattern Recognit. Lett. 31(10), 1089–1099 (2010)

    Google Scholar 

  18. Bartels, M., Wei, H., Mason, D.C.: Wavelet packets and co-occurrence matrices for texture-based image segmentation. In: IEEE International Conference on Advanced Video and Signal-Based Surveillance, vol. 1, pp. 428–433 (2005)

    Google Scholar 

  19. Bartels, M., Wei, H., Mason, D.C.: DTM generation from LIDAR data using skewness balancing. In: Proceedings of 18th International Conference on Pattern Recognition, I, pp. 566–569 (2006)

    Google Scholar 

  20. Bater, C.W., Coops, N.C.: Evaluating error associated with LIDAR-derived DEM interpolation. Comput. Geosci. 35(2), 289–300 (2009)

    Google Scholar 

  21. Bouillon, A., Bernard, M., Gigord, P., Orsoni, A., Rudowski, V., Baudoin, A.: SPOT 5 HRS geometric performances: using block adjustment as a key issue to improve quality of DEM generation. ISPRS J. Photogramm. Remote Sens. 60(3), 134–146 (2006)

    Google Scholar 

  22. Brenner, C.: Towards fully automatic generation of city models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 33(3), 85–92 (2000)

    Google Scholar 

  23. Bretar, F., Roux, M.: Hybrid image segmentation using LIDAR 3D planar primitives. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 72–78 (2005)

    Google Scholar 

  24. Bretar, F., Pierrot-Deseilligny, M., Roux, M.: Recognition of building roof facets by merging aerial images and 3D LIDAR data in a hierarchical segmentation framework. In: Proceedings of 18th International Conference on Pattern Recognition, IV, pp. 5–8 (2006)

    Google Scholar 

  25. Briese, C., Pfeifer, N.: Airborne laser scanning and derivation of digital terrain models. Opt. 3-D Meas. Tech. V, 81–87 (2001)

    Google Scholar 

  26. Briese, C., Pfeifer, N., Dorninger, P.: Applications of the robust interpolation for DTM determination. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3A), 55–61 (2002)

    Google Scholar 

  27. Brovelli, M.A., Cannata, M., Longoni, U.M.: Managing and processing LIDAR data within GRASS. In: Proceedings of the Open Source GIS—GRASS Users Conference, I (2002). 29 pages

    Google Scholar 

  28. Burton, T., Neill, L.: Use of low-level LIDAR systems for commercial large-scale survey applications. In: Annual Conference of the Remote Sensing and Photogrammetry Society, I(1), (2007). 6 pages

    Google Scholar 

  29. Carballo, G.F., Fieguth, P.W.: Hierarchical network flow phase unwrapping. IEEE Trans. Geosci. Remote Sens. 40(8), 1695–1708 (2002)

    Google Scholar 

  30. Charaniya, A.P., Manduchi, R., Lodha, S.K.: Supervized parametric classification of aerial LIDAR data. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp. 30–38 (2004)

    Google Scholar 

  31. Chen, C., Yue, T.: A method of DEM construction and related error analysis. Comput. Geosci. 36(6), 717–725 (2010)

    Google Scholar 

  32. Chen, Q., et al.: Filtering airborne laser scanning data with morphological methods. Photogramm. Eng. Remote Sens. 73(2), 175–185 (2007)

    Google Scholar 

  33. Cobby, D.M.: The use of airborne scanning laser altimetry for improved river flood prediction. University of Reading (2002)

    Google Scholar 

  34. Cobby, D.M., Mason, D.C., Davenport, I.J.: Image processing of airborne scanning laser altimetry data for improved river flood modeling. ISPRS J. Photogramm. Remote Sens. 56, 121–138 (2001)

    Google Scholar 

  35. Cobby, D.M., et al.: Two-dimensional hydraulic flood modeling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrol. Process. 17(10), 1979–2000 (2002)

    Google Scholar 

  36. Costantini, M.: A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 36(3), 813–821 (1998)

    MathSciNet  Google Scholar 

  37. Costantini, M., Farina, A., Zirilli, F.: A fast phase unwrapping algorithm for SAR interferometry. IEEE Trans. Geosci. Remote Sens. 37(1), 452–460 (1999)

    Google Scholar 

  38. Crosetto, M.: Calibration and validation of SAR interferometry for DEM generation. ISPRS J. Photogramm. Remote Sens. 57, 213–227 (2002)

    Google Scholar 

  39. Davenport, I.J., et al.: Improving bird population models using airborne remote sensing. Int. J. Remote Sens. 21(13 & 14), 2705–2717 (2000)

    Google Scholar 

  40. Duda, R.O., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  41. Faugeras, O.: Three-Dimensional Computer Vision—A Geometric Viewpoint. MIT Press, Cambridge (1993)

    Google Scholar 

  42. Ferraioli, G., et al.: Multichannel phase unwrapping with graph cuts. IEEE Geosci. Remote Sens. Lett. 6(3), 562–566 (2009)

    Google Scholar 

  43. Flood, M.: LIDAR activities and research priorities in the commercial sector. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 3–7 (2001)

    Google Scholar 

  44. Fornaro, G., Franceschetti, G., Lanari, R.: Interferometric SAR phase unwrapping using green’s formulation. IEEE Trans. Geosci. Remote Sens. 34(3), 720–727 (1996)

    Google Scholar 

  45. Förstner, W.: On the geometric precision of digital correlation. Int. Arch. Photogramm. 24(III), 176–189 (1982). Helsinki

    Google Scholar 

  46. Förstner, W., Gulch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Inter-commission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (1987)

    Google Scholar 

  47. Fraile, R., Maybank, S.: Comparing probabilistic and geometric models on LIDAR data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3/W4), 67–70 (2001)

    Google Scholar 

  48. Fraser, C.S.: High-resolution satellite imagery: a review of metric aspects. In: International Archives of Photogrammetry and Remote Sensing, XXXIII, Part B7, Amsterdam (2000)

    Google Scholar 

  49. Fried, D.L.: Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements. J. Opt. Soc. Am. 67, 370–375 (1977)

    Google Scholar 

  50. Friess, P.: Toward a rigorous methodology airborne laser mapping. In: ISPRS International Calibration and Orientation Workshop (EuroCOW 2006), I (2006). 7 pages

    Google Scholar 

  51. Gabet, L., Giraudon, G., Renouard, L.: Automatic generation of high resolution urban zone digital elevation models. ISPRS J. Photogramm. Remote Sens. 52(1), 33–47 (1997)

    Google Scholar 

  52. Galiatsatos, N., Donoghue, D.N.M., Philip, G.: High resolution elevation data derived from stereoscopic CORONA imagery with minimal ground control: an approach using ikonos and SRTM data. Photogramm. Eng. Remote Sens. 74(9), 1093–1106 (2008)

    Google Scholar 

  53. Ghiglia, D.C., Romero, L.A.: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. 11(1), 107–117 (1994)

    Google Scholar 

  54. Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)

    Google Scholar 

  55. Gomes Pereira, L.M., Janssen, L.L.F.: Suitability of laser data for DTM generation: a case study in the context of road planning and design. ISPRS J. Photogramm. Remote Sens. 54, 244–253 (1999)

    Google Scholar 

  56. Graham, L.C.: Synthetic interferometric radar for topographic mapping. Proc. IEEE 62(6), 763–768 (1974)

    Google Scholar 

  57. Gruen, A.W.: Adaptive least squares correlation: a powerful image matching technique. J. Photogramm. Remote Sens. Cartography 14(3), 175–185 (1985)

    Google Scholar 

  58. Gwinner, K., et al.: Topography of mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth Planet. Sci. Lett. 294(3–4), 506–519 (2010)

    Google Scholar 

  59. Haala, N., Brenner, C.: Generation of 3D city models from airborne laser scanning data. In: Proceedings of EARSEL Workshop on LIDAR Remote Sensing of Land and Sea, pp. 105–112 (1997)

    Google Scholar 

  60. Haala, N., Brenner, C.: Fast production of virtual reality city models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 32(4), 77–84 (1998)

    Google Scholar 

  61. Haala, N., Brenner, C.: Extraction of buildings and trees in urban environments. ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999)

    Google Scholar 

  62. Haala, N., Brenner, C., Anders, K.-H.: 3D urban GIS from laser altimeter and 2D map data. ISPRS Congress Commission III, Working Group 4(32(3/1)), 339–346 (1998)

    Google Scholar 

  63. Haala, N., Brenner, C., Staetter, C.: An integrated system for urban model generation. Proceedings ISPRS Congress Commission II, Working Group 6, 96–103 (1998)

    Google Scholar 

  64. Habib, A., et al.: DEM generation from high resolution satellite imagery using parallel projection model. In: ISPRS Congress, Istanbul (2004)

    Google Scholar 

  65. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I. Addison-Wesley, Reading (1992)

    Google Scholar 

  66. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987)

    Google Scholar 

  67. Hasegawa, H., et al.: DEM accuracy and the base to height (B/H) ratio of stereo images. In: International Archives of Photogrammetry and Remote Sensing, XXXIII, Part B4, Amsterdam (2000)

    Google Scholar 

  68. Hashimoto, T.: DEM generation from stereo AVNIR images. Adv. Space Res. 25(5), 931–936 (2000)

    Google Scholar 

  69. Heipke, C.: Automation of interior, relative, and absolute orientation. ISPRS J. Photogramm. Remote Sens. 52(1), 1–19 (1997)

    Google Scholar 

  70. Hellwich, O.: Basic principles and current issues of SAR interferometry. In: ISPRS Workshop, Commission I, Working Group I/3, Hannover, Germany (1999)

    Google Scholar 

  71. Hellwich, O., Ebner, H.: Geocoding SAR interferograms by least squares adjustment. ISPRS J. Photogramm. Remote Sens. 55(4), 277–288 (2000)

    Google Scholar 

  72. Henssen, R.F.: Radar interferometry: data interpretation and error analysis. In: Meer, F.V.D. (ed.) Remote Sensing and Digital Image Processing, vol. 2. Kluwer Academic, London (2001)

    Google Scholar 

  73. Hirano, A., Welch, R., Lang, H.: Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J. Photogramm. Remote Sens. 57(5–6), 356–370 (2003)

    Google Scholar 

  74. Hodgson, M.E., Bresnahan, P.: Accuracy of airborne LIDAR-derived elevation: empirical assessment and error budget. Photogramm. Eng. Remote Sens. 70(3), 331–339 (2004)

    Google Scholar 

  75. Hodgson, M.E., et al.: An evaluation of LIDAR-derived elevation and terrain slope in leaf-off conditions. Photogramm. Eng. Remote Sens. 71(7), 817–823 (2005)

    Google Scholar 

  76. Hofmann, A.D., Maas, H.-G., Streilein, A.: Knowledge-based building detection based on laser scanner data and topographic map information. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3A), 169–174 (2002)

    Google Scholar 

  77. Hogan, R.J., et al.: Characteristics of mixed-phase clouds. I: LIDAR, radar and aircraft observations from CLARE98. Q. J. R. Meteorol. Soc. 129(592), 2089–2116 (2003)

    Google Scholar 

  78. Huising, E.J., Gomes Pereira, L.M.: Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS J. Photogramm. Remote Sens. 53, 245–261 (1998)

    Google Scholar 

  79. Hunt, B.R.: Matrix formulation of the reconstruction of phase values from phase differences. J. Opt. Soc. Am. 69, 393–399 (1979)

    Google Scholar 

  80. Hutchinson, M.F.: Development of a continent-wide DEM with applications to terrain and climate analysis. In: Goodchild, M.F., et al. (eds.) Environmental Modeling with GIS. Oxford University Press, Oxford (1993)

    Google Scholar 

  81. Hyyppä, H., et al.: Factors affecting the quality of DTM generation in forested areas. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 85–90 (2005)

    Google Scholar 

  82. Jacobsen, K.: DEM generation from satellite data. In: Remote Sensing in Transition—23rd EARSeL Symposium, Ghent, Belgium (2003)

    Google Scholar 

  83. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1) (2000)

    Google Scholar 

  84. James, T.D., et al.: Extracting photogrammetric ground control from LIDAR DEMs for change detection. Photogramm. Rec. 21(116), 312–328 (2006)

    Google Scholar 

  85. Jet Propulsion Laboratory: ASTER Global Digital Elevation Map Announcement. http://asterweb.jpl.nasa.gov/gdem.asp (2009)

  86. Jong-Sen, L., et al.: A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 36(5), 1456–1465 (1998)

    Google Scholar 

  87. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920–932 (1994)

    Google Scholar 

  88. Kervyn, F.: Modeling topography with SAR interferometry: illustrations of a favourable and less favourable environment. Comput. Geosci. 27(9), 1039–1050 (2001)

    Google Scholar 

  89. Kidner, D.B., et al.: Coastal monitoring with LIDAR: challenges, problems, and pitfalls. Proc. SPIE 5574, 80–89 (2004)

    Google Scholar 

  90. Kilian, J., Haala, N., Englich, M.: Capture and evaluation of airborne laser data. Int. Arch. Photogramm. Remote Sens. 31(3), 383–388 (1996)

    Google Scholar 

  91. Kobler, A., et al.: Repetitive interpolation: a robust algorithm for DTM generation from aerial laser scanner data in forested terrain. Remote Sens. Environ. 108(1), 9–23 (2007)

    Google Scholar 

  92. Kornus, W., et al.: DEM generation from SPOT-5 3-fold along track stereoscopic imagery using autocalibration. ISPRS J. Photogramm. Remote Sens. 60(3), 147–159 (2006)

    Google Scholar 

  93. Kraus, K., Pfeifer, N.: Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998)

    Google Scholar 

  94. Kraus, K., Pfeifer, N.: Advanced DTM generation from LIDAR data. ISPRS J. Photogramm. Remote Sens. 53, 193–203 (2001)

    Google Scholar 

  95. Krieger, G., et al.: TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 45(11), 3317–3341 (2007)

    Google Scholar 

  96. Krzystek, P.: Filtering of laser scanning data in forest areas using finite elements. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W13) (2003). 6 pages

    Google Scholar 

  97. Lanari, R., et al.: Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study. IEEE Trans. Geosci. Remote Sens. 34(5), 1097–1114 (1996)

    Google Scholar 

  98. Lee, H.-Y., et al.: Extraction of digital elevation models from satellite stereo images through stereo matching based on epipolarity and scene geometry. Image Vis. Comput. 21(9), 789–796 (2003)

    Google Scholar 

  99. Li, H., Liao, G.: An estimation method for InSAR interferometric phase based on MMSE criterion. IEEE Trans. Geosci. Remote Sens. 48(3), 1457–1469 (2010)

    Google Scholar 

  100. Li, J., et al.: The research and design of the base-height ratio for the three linear array camera of satellite photogrammetry. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, Part B1, Beijing (2008)

    Google Scholar 

  101. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation. Wiley, New York (2004)

    Google Scholar 

  102. Lin, Q., Vesecky, J.F., Zebker, H.A.: New approaches in interferometric SAR data processing. IEEE Trans. Geosci. Remote Sens. 30(3), 560–567 (1992)

    Google Scholar 

  103. Loffeld, O., et al.: Phase unwrapping for SAR interferometry—a data fusion approach by Kalman filtering. IEEE Trans. Geosci. Remote Sens. 46(1), 47–58 (2008)

    Google Scholar 

  104. Löffler, G.: Aspects of raster DEM data derived from laser measurements. Int. Arch. Photogramm. Remote Sen. Spatial Inf. Sci. XXXIV(3/W13) (2003). 5 pages

    Google Scholar 

  105. Lohr, U.: Laserscan DEM for various applications. In: Fritsch, M.E.D., Sester, M. (eds.) ISPRS Commission IV Symposium on GIS—Between Visions and Applications, vol. 32/4 (1998)

    Google Scholar 

  106. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Google Scholar 

  107. Luethya, J., Stengele, R.: 3D mapping of Switzerland—challenges and experiences. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 42–47 (2005)

    Google Scholar 

  108. Maas, H.-G.: Akquisition von 3D-GIS Daten durch Flugzeuglaserscanning. Kartogr. Nachr. 55(1), 3–11 (2005)

    MathSciNet  Google Scholar 

  109. Marr, D., Poggio, T.: A computational theory of human stereo vision. Proc. R. Soc. Lond., Ser. B 204(1156), 301–328 (1979)

    Google Scholar 

  110. Martinez-Espla, J.J., Martinez-Marin, T., Lopez-Sanchez, J.M.: A particle filter approach for InSAR phase filtering and unwrapping. IEEE Trans. Geosci. Remote Sens. 47(4), 1197–1211 (2009)

    Google Scholar 

  111. Mason, D.C., Scott, T.R., Wang, H.-J.: Extraction of tidal channel networks from airborne scanning laser altimetry. ISPRS J. Photogramm. Remote Sens. 61(2), 67–83 (2006)

    Google Scholar 

  112. Massonnet, D., Rabaute, T.: Radar interferometry: limits and potential. IEEE Trans. Geosci. Remote Sens. 31(2), 455–464 (1993)

    Google Scholar 

  113. Mora, O., et al.: Generation of accurate DEMs using DInSAR methodology (TopoDInSAR). IEEE Geosci. Remote Sens. Lett. 3(4), 551–554 (2006)

    Google Scholar 

  114. Nardinocchi, C., Forlani, G., Zingaretti, P.: Classification and filtering of laser data. Int. Arch. Photogramm. Remote Sen. Spatial Inf. Sci. XXXIV(3/W13) (2003). 8 pages

    Google Scholar 

  115. Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. Artech House, London (1998)

    Google Scholar 

  116. O’Neill, M., Denos, M.: Automated system for coarse-to-fine pyramidal area correlation stereo matching. Image Vis. Comput. 14(3), 225–236 (1996)

    Google Scholar 

  117. Otto, G.P., Chau, T.K.W.: Region-growing algorithm for matching of terrain images. Image Vis. Comput. 7(2), 83–94 (1989)

    Google Scholar 

  118. Oude Elberink, S., Maas, H.-G.: The use of anisotropic height texture measures for the segmentation of laser scanner data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIII(B3), 678–684 (2000)

    Google Scholar 

  119. Pertl, A.: Digital image correlation with the analytical plotter PLANICOMP C-100. In: Int. Archives of Photogrammetry and Remote Sensing, XXV, A3b, Commission III, Rio de Janeiro (1984)

    Google Scholar 

  120. Pfeifer, N., Stadler, P., Briese, C.: Derivation of digital terrain models in the SCOP++ environment. In: Proceedings of OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models (2001)

    Google Scholar 

  121. Pritt, M.D., Shipman, J.S.: Least-squares two-dimensional phase unwrapping using FFT’s. IEEE Trans. Geosci. Remote Sens. 32(3), 706–708 (1994)

    Google Scholar 

  122. Raber, G.T., et al.: Creation of digital terrain models using an adaptive LIDAR vegetation point removal process. Photogramm. Eng. Remote Sens. 68(12), 1307–1315 (2002)

    Google Scholar 

  123. Rabus, B., et al.: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57(4), 241–262 (2003)

    Google Scholar 

  124. Raney, R.K., et al.: Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 32(4), 786–799 (1994)

    Google Scholar 

  125. Reinartz, P., et al.: Accuracy analysis for DSM and orthoimages derived from SPOT HRS stereo data using direct georeferencing. ISPRS J. Photogramm. Remote Sens. 60(3), 160–169 (2006)

    Google Scholar 

  126. Rodriguez, E., Martin, J.M.: Theory and design of interferometric synthetic aperture radars. IEE Proc., F, Radar Signal Process. 139(2), 147–159 (1992)

    Google Scholar 

  127. Rogers, A.E.E., Ingalls, R.P.: Venus: mapping the surface reflectivity by radar interferometry. Science 165, 797–799 (1969)

    Google Scholar 

  128. Roggero, M.: Airborne laser scanning: clustering in raw data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3/W4), 227–232 (2001)

    Google Scholar 

  129. Rosen, P.A., et al.: Synthetic aperture radar interferometry. Proc. IEEE 88(3), 333–382 (2000)

    Google Scholar 

  130. Rosenfeld, A.: Image analysis: problems, progress and prospects. Pattern Recognit. 17(1), 3–12 (1984)

    Google Scholar 

  131. Rottensteiner, F., Briese, C.: Automatic generation of building models from LIDAR data and the integration of aerial images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. ISPRS 34(3/W13), 174–180 (2003)

    Google Scholar 

  132. Rottensteiner, F., et al.: Building detection by fusion of airborne laser scanner data and multi-spectral images: performance evaluation and sensitivity analysis. ISPRS J. Photogramm. Remote Sens. 62, 135–149 (2007)

    Google Scholar 

  133. Rottensteiner, F., et al.: Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection. Inf. Fusion 6, 283–300 (2005)

    Google Scholar 

  134. Rottensteiner, F., et al.: Automated delineation of roof planes from LIDAR data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 42–47 (2005)

    Google Scholar 

  135. Rufino, G., Moccia, A., Esposito, S.: DEM generation by means of ERS tandem data. IEEE Trans. Geosci. Remote Sens. 36(6), 1905–1912 (1998)

    Google Scholar 

  136. Schenk, T., Csathó, B.: Fusion of LIDAR data and aerial imagery for a more complete surface description. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3A/B), 310–317 (2002)

    Google Scholar 

  137. Schenk, T., Seo, S., Csathó, B.: Accuracy study of airborne laser scanning data with photogrammetry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 113–118 (2001)

    Google Scholar 

  138. Schnadt, K., Katzenbeißer, R.: Unique airborne fiber scanner technique for application-oriented LIDAR products. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(8/W2), 19–23 (2004)

    Google Scholar 

  139. Silván-Cárdenas, J.L., Wang, L.: A multi-resolution approach for filtering LIDAR altimetry data. ISPRS J. Photogramm. Remote Sens. 61, 11–22 (2006)

    Google Scholar 

  140. Silván-Cárdenas, J.L., Wang, L.: The multiscale Hermite transform for local orientation analysis. IEEE Trans. Image Process. 15(5), 1236–1253 (2006)

    Google Scholar 

  141. Silván-Cárdenas, J.L., Wang, L.: Multiscale-based filtering of LIDAR altimetry data. MAPPS/ASPRS, I (2006). 6 pages

    Google Scholar 

  142. Sithole, G.: Filtering of laser altimetry data using a slope adaptive filter. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 203–210 (2001)

    Google Scholar 

  143. Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 59(1–2), 85–101 (2004)

    Google Scholar 

  144. Sohn, G.: Extraction of buildings from high-resolution satellite data and LIDAR. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXV(7), 1036–1042 (2004)

    Google Scholar 

  145. Sohn, G., Dowman, I.: Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3A), 336–344 (2002)

    Google Scholar 

  146. Tarsha-Kurdi, F., et al.: New approach for automatic detection of buildings in airborne laser scanner. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3), 25–30 (2006)

    Google Scholar 

  147. Toutin, T.: Error tracking in ikonos geometric processing using a 3D parametric model. Photogramm. Eng. Remote Sens. 69(1), 43–51 (2003)

    Google Scholar 

  148. Toutin, T.: Spatiotriangulation with multisensor VIR/SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2096–2103 (2004)

    Google Scholar 

  149. Toutin, T.: Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird. IEEE Trans. Geosci. Remote Sens. 42(10), 2121–2129 (2004)

    Google Scholar 

  150. Toutin, T.: Generation of DSMs from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J. Photogramm. Remote Sens. 60(3), 170–181 (2006)

    Google Scholar 

  151. Toutin, T., Gray, L.: State-of-the-art of elevation extraction from satellite SAR data. ISPRS J. Photogramm. Remote Sens. 55(1), 13–33 (2000)

    Google Scholar 

  152. Viñas, O., et al.: Combined use of LIDAR and QuickBird data for the generation of land use maps. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(7), 155–159 (2006)

    Google Scholar 

  153. von Hansen, W., Vögtle, T.: Extraktion der geländeoberfläche aus flugzeuggetragenen Laserscanner-Aufnahmen. Photogramm. Fernerkund. Geoinf. (PFG) 4, 229–236 (1999)

    Google Scholar 

  154. Vosselman, G.: Building reconstruction using planar faces in very high density height data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 32(3/2W5), 87–92 (1999)

    Google Scholar 

  155. Vosselman, G.: Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 33(B3/2), 935–942 (2000)

    Google Scholar 

  156. Vosselman, G., Dijkman, S.: 3D building model reconstruction from point clouds and ground plans. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 37–43 (2001)

    Google Scholar 

  157. Vosselman, G., Suveg, I.: Map based building reconstruction from laser data and images. Proc. Autom. Extract. Man-Made Obj. Aerial Space Images 32(3/2W5), 231–239 (2001)

    Google Scholar 

  158. Vu, T.T., Tokunaga, M.: Wavelet and scale-space theory in segmentation of airborne laser scanner data. In: Proc. 22nd Asian Conference on Remote Sensing, I (2001). 5 pages

    Google Scholar 

  159. Vu, T.T., Tokunaga, M.: Wavelet-based clustering method to detect building in urban area from airborne laser scanner data. In: MapAsia 2002, I (2002). 2 pages

    Google Scholar 

  160. Vu, T.T., Tokunaga, M.: Wavelet-based filtering the cloud points derived from airborne laser scanner. In: Proceeding of the 23rd Asian Conference on Remote Sensing, I (2002). 2 pages

    Google Scholar 

  161. Vu, T.T., et al.: Wavelet-based system for classification of airborne laser scanner data. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2003, vol. 7, pp. 4404–4406 (2003)

    Google Scholar 

  162. Vu, T.T., Tokunaga, M., Yamazaki, F.: In: LIDAR signatures to update Japanese building inventory database. 25th Asian Conference on Remote Sensing, I (2004). 6 pages

    Google Scholar 

  163. Wack, R., Stelzl, H.: Laser DTM generation for South-Tyrol and 3D-visualization. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 48–53 (2005)

    Google Scholar 

  164. Wack, R., Wimmer, A.: Digital terrain models from airborne laser scanner data—a grid based approach. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3B), 293–296 (2002)

    Google Scholar 

  165. Wang, Y.: Principles and applications of structural image matching. ISPRS J. Photogramm. Remote Sens. 53(3), 154–165 (1998)

    Google Scholar 

  166. Weed, C.A., et al.: Classification of LIDAR data using a lower envelope follower and gradient-based operator. IEEE International Geoscience and Remote Sensing Symposium 3, 1384–1386 (2002)

    Google Scholar 

  167. Wehr, A., Lohr, U.: Airborne laser scanning—an introduction and overview. ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999)

    Google Scholar 

  168. Wei, H., Bartels, M.: Unsupervized segmentation using Gabor wavelets and statistical features in LIDAR data analysis. In: Proceedings of 18th International Conference on Pattern Recognition, I, pp. 667–670 (2006)

    Google Scholar 

  169. Weidner, U.: An approach to building extraction from digital surface models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 31(B3), 924–929 (1996)

    Google Scholar 

  170. Weidner, U.: Digital Surface Models for Building Extraction. Automatic Extraction of Man-Made Objects from Aerial and Space Images (II). Birkhäuser, Basel (1997). A. Grün (ed.)

    Google Scholar 

  171. Weidner, U.: Analysis and comparison of different high-resolution data sets for urban applications. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(7), 750–755 (2006)

    Google Scholar 

  172. Weidner, U., Förstner, W.: Towards automatic building extraction from high resolution digital elevation models. ISPRS J. Photogramm. Remote Sens. 50(4), 38–49 (1995)

    Google Scholar 

  173. Wu, N., Feng, D.-Z., Li, J.: A locally adaptive filter of interferometric phase images. IEEE Geosci. Remote Sens. Lett. 3(1), 73–77 (2006)

    MathSciNet  Google Scholar 

  174. Xu, W., Cumming, I.: A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens. 37(1), 124–134 (1999)

    Google Scholar 

  175. Yao, W., Hinz, S., Stilla, U.: Automatic vehicle extraction from airborne LIDAR data of urban areas using morphological reconstruction. In: Proceedings of 5th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008) (2008). 4 pages

    Google Scholar 

  176. Yamaki, R., Hirose, A.: Singular unit restoration in interferograms based on complex-valued Markov random field model for phase unwrapping. IEEE Geosci. Remote Sens. Lett. 6(1), 18–22 (2009)

    Google Scholar 

  177. Yu, H., Li, Z., Bao, Z.: A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm. IEEE Trans. Geosci. Remote Sens. 49(1), 478–487 (2011)

    Google Scholar 

  178. Yu, Q., et al.: An adaptive contoured window filter for interferometric synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 4(1), 23–26 (2007)

    Google Scholar 

  179. Yu, X., et al.: Applicability of first pulse derived digital terrain models for Boreal forest studies. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 97–102 (2005)

    Google Scholar 

  180. Zebker, H.A., et al.: The TOPSAR interferometric radar topographic mapping instrument. IEEE Trans. Geosci. Remote Sens. 30(5), 933–940 (1992)

    Google Scholar 

  181. Zhang, K., et al.: A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 41(4), 872–882 (2003)

    Google Scholar 

  182. Zhang, L., Gruen, A.: Multi-image matching for DSM generation from IKONOS imagery. ISPRS J. Photogramm. Remote Sens. 60(3), 195–211 (2006)

    Google Scholar 

  183. Zhang, Z., et al.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell. 78(1–2), 87–119 (1995)

    Google Scholar 

  184. Zisk, S.H.: A new Earth-based radar technique for the measurement of lunar topography. Moon 4, 296–300 (1972)

    Google Scholar 

  185. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Wei, H., Bartels, M. (2012). 3D Digital Elevation Model Generation. In: Pears, N., Liu, Y., Bunting, P. (eds) 3D Imaging, Analysis and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-4063-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4063-4_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4062-7

  • Online ISBN: 978-1-4471-4063-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics