Advertisement

3D Medical Imaging

  • Philip G. Batchelor
  • P. J. “Eddie” Edwards
  • Andrew P. King

Abstract

This chapter overviews three-dimensional (3D) medical imaging and the associated analysis techniques. The methods described here aim to reconstruct the inside of the human body in three dimensions. This is in contrast to optical methods that try to reconstruct the surface of viewed objects, although there are similarities in some of the geometries and techniques used. Due to the wide scope of medical imaging it is unrealistic to attempt an exhaustive or detailed description of techniques. Rather, the aim is to provide some illustrations and directions for further study for the interested reader. The first section gives an overview of the physics of data acquisition, where images come from and why they look the way they do. The next section illustrates how this raw data is processed into surface and volume data for viewing and analysis. This is followed by a description of how to put images in a common coordinate frame and a more specific case study illustrating higher dimensional data manipulation. Finally, we describe some clinical applications to show how these methods can be used to provide effective treatment of patients.

Keywords

Positron Emission Tomography Fractional Anisotropy Mean Diffusivity Iterative Close Point Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bailey, D., Townsend, D., Valk, P., Maisey, M.N. (eds.): Positron Emission Tomography. Springer, Berlin (2005) Google Scholar
  2. 2.
    Baillard, C., Hellier, P., Barillot, C.: Segmentation of brain 3D MR images using level sets and dense registration. Med. Image Anal. 5, 185–194 (2001) CrossRefGoogle Scholar
  3. 3.
    Barret, H.H., Myers, K.J.: Foundations of Image Science. Pure and Applied Optics. Wiley, New York (2004) Google Scholar
  4. 4.
    Barrett, J.F., Keat, N.: Artifacts in CT: recognition and avoidance. Radiograph., Rev. Publ. Radiol. Soc. N. Am. 24(6), 1679–1691 (2004). doi: 10.1148/rg.246045065. http://radiographics.rsna.org/content/24/6/1679.full Google Scholar
  5. 5.
    Batchelor, P., Castellano Smith, A., Hill, D., Hawkes, D., Cox, T., Dean, A.: Measures of folding applied to the development of the human fetal brain. IEEE Trans. Med. Imaging 21(8), 953–965 (2002) CrossRefGoogle Scholar
  6. 6.
    Batchelor, P.G., Calamante, F., Tournier, D., Atkinson, D., Hill, D.L.G., Connelly, A.: Quantification of the shape of fiber tracts. Methods 903(2005), 894–903 (2006). doi: 10.1002/mrm.20858 Google Scholar
  7. 7.
    Batchelor, P.G., Calamante, F., Tournier, J., Atkinson, D., Hill, D.L.G., Connelly, A.: Quantification of the shape of fiber tracts. Magn. Reson. Med. 55, 894–903 (2006) CrossRefGoogle Scholar
  8. 8.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M. (eds.): Computational Geometry: Algorithms and Applications. Springer, Berlin (2008) MATHGoogle Scholar
  9. 9.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998) MATHCrossRefGoogle Scholar
  10. 10.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992) CrossRefGoogle Scholar
  11. 11.
    Birkfellner, W.: Applied Medical Image Processing: A Basic Course. CRC Press, Boca Raton (2010) Google Scholar
  12. 12.
    Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998) MATHCrossRefGoogle Scholar
  13. 13.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Med. Imaging 11, 567–585 (1989) MATHGoogle Scholar
  14. 14.
    de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Adapting active shape models for 3D segmentation of tubular structures in medical images. In: Proceedings IPMI (2003) Google Scholar
  15. 15.
    de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Interactive segmentation of abdominal aortic aneurysms in CTA images. Med. Image Anal. 8, 127–138 (2004) CrossRefGoogle Scholar
  16. 16.
    Bushberg, J.T.: The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins, Baltimore (2002) Google Scholar
  17. 17.
    Carmichael, O.T., Aizenstein, H.A., Davis, S.W., Becker, J.T., Thompson, P.M., Meltzer, C.C., Liu, Y.: Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage 27, 979–990 (2005) CrossRefGoogle Scholar
  18. 18.
    Ciofolo, C., Barillot, C.: Atlas-based segmentation of 3d cerebral structures with competitive level sets and fuzzy control. Med. Image Anal. 13, 456–470 (2010) CrossRefGoogle Scholar
  19. 19.
    Cohen, L.D.: On active contour models and balloon. CVGIP, Image Underst. 53, 211–218 (1991) MATHCrossRefGoogle Scholar
  20. 20.
    Cootes, T., Twining, C., Babalola, K., Taylor, C.: Diffeomorphic statistical shape models. Image Vis. Comput. 26(3), 326–332 (2008) CrossRefGoogle Scholar
  21. 21.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995) CrossRefGoogle Scholar
  22. 22.
    Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.G., Thiran, J.P.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans. Med. Imaging 23, 1301–1314 (2004) CrossRefGoogle Scholar
  23. 23.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. 39, 1–38 (1977) MathSciNetMATHGoogle Scholar
  24. 24.
    Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J., Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in CT images. IEEE Trans. Med. Imaging 27, 1189–1201 (2008) CrossRefGoogle Scholar
  25. 25.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001) MATHCrossRefGoogle Scholar
  26. 26.
    Epstein, C.L.: Introduction to the Mathematics of Medical Imaging, 2nd edn. SIAM, Philadelphia (2003) MATHGoogle Scholar
  27. 27.
    Erasmus, L.J., Hurter, D., Naudé, M., Kritzinger, H.G., Acho, S.: A short overview of MRI artefacts. SA J. Radiol. 8(2), 13–17 (2004) Google Scholar
  28. 28.
    Fitzpatrick, M.J., West, J.B., Maurer, C.R. Jr.: Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imaging 17(5), 694–702 (1998) CrossRefGoogle Scholar
  29. 29.
    Fripp, J., Crozier, S., Warfield, S., Ourselin, S.: Automatic segmentation of the knee bones using 3D active shape models. In: Proceedings ICPR (2006) Google Scholar
  30. 30.
    Gardner, R.J.: In: Geometric Tomography. Cambridge University Press, Cambridge (2006) Google Scholar
  31. 31.
    Hajnal, J.V. (ed.): Medical Image Registration. CRC Press, Boca Raton (2001) Google Scholar
  32. 32.
    Hall, P., Ngan, M., Andreae, P.: Reconstruction of vascular networks using three-dimensional models. IEEE Trans. Med. Imaging 16(6), 919–929 (1997) CrossRefGoogle Scholar
  33. 33.
    Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003) CrossRefGoogle Scholar
  34. 34.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543–563 (2009) CrossRefGoogle Scholar
  35. 35.
    Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Phys. Med. Biol. 46, R1–R45 (2001) CrossRefGoogle Scholar
  36. 36.
    Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609 (1994) CrossRefGoogle Scholar
  37. 37.
    Imai, K., Ikeda, M., Wada, S., Enchi, Y., Niimi, T.: Analysis of streak artefacts on CT images using statistics of extremes. Br. J. Radiol. 80(959), 911–918 (2007). http://bjr.birjournals.org/cgi/content/abstract/80/959/911. doi: 10.1259/bjr/93741044 CrossRefGoogle Scholar
  38. 38.
    Johansen-Berg, H., Behrens, T.E. (eds.): Diffusion MRI from Quantitative Measurement to In-Vivo Neuroanatomy. Elsevier, Amsterdam (2009) Google Scholar
  39. 39.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia (2001). Unabridged edn. CrossRefGoogle Scholar
  40. 40.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes—active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1987) CrossRefGoogle Scholar
  41. 41.
    Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35, 1407–1417 (2008) CrossRefGoogle Scholar
  42. 42.
    Kucera, D., Martin, R.W.: Segmentation of sequences of echocardiographic images using a simplified 3D active contour model with region-based external forces. Comput. Med. Imaging Graph. 21, 1–21 (1997) CrossRefGoogle Scholar
  43. 43.
    Lerotic, M., Chung, A., Mylonas, G., Yang, G.Z.: Pq-space based non-photorealistic rendering for augmented reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. Lecture Notes in Computer Science, vol. 4792, pp. 102–109. Springer, Berlin (2007) Google Scholar
  44. 44.
    Liang, Z.P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: a Signal Processing Perspective. Series on Biomedical Engineering. IEEE Press, New York (2000) Google Scholar
  45. 45.
    Liebling, M.: CT Reconstruction Demo Applet. Online (2001). http://bigwww.epfl.ch/demo/jtomography/demo.html
  46. 46.
    Linguraru, M.G., Sandberg, J.K., Li, Z., Pura, J.A., Summers, R.M.: Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. In: Proceedings MICCAI, pp. 1001–1008 (2009) Google Scholar
  47. 47.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface reconstruction algorithm. Comput. Graph. 21(3), 163–169 (1987) Google Scholar
  48. 48.
    Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Med. Image Anal. 10, 657–670 (2006) CrossRefGoogle Scholar
  49. 49.
    Lorenzo-Valdés, M., Sanchez-Ortiza, G.I., Elkington, A.G., Mohiaddin, R.H., Rueckert, D.: Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med. Image Anal. 8, 255–265 (2004) CrossRefGoogle Scholar
  50. 50.
    Malladi, R., Sethian, J., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995) CrossRefGoogle Scholar
  51. 51.
    Manniesing, R., Velthuis, B.K., can Leeuwen, M.S., van der Schaaf, I.C., van Laar, P.J., Niessen, W.J.: Level set based cerebral vasculature segmentation and diameter quantification in ct angiography. Med. Image Anal. 10(2), 200–214 (2006) CrossRefGoogle Scholar
  52. 52.
    Manzke, R., Meyer, C., Ecabert, O., Peters, J., Noordhoek, N.J., Thiagalingam, A., Reddy, V., Chan, R.C., Weese, J.: Automatic segmentation of rotational X-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures. IEEE Trans. Med. Imaging 29, 260–272 (2010) CrossRefGoogle Scholar
  53. 53.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996) CrossRefGoogle Scholar
  54. 54.
    Mei, L., Figl, M., Darzi, A., Rueckert, D., Edwards, P.: Sample sufficiency and PCA dimension for statistical shape models. In: Proceedings of the 10th European Conference on Computer Vision: Part IV, pp. 492–503. Springer, Berlin (2008). http://portal.acm.org/citation.cfm?id=1478237.1478274 Google Scholar
  55. 55.
    Mei, L., Figl, M., Rueckert, D., Darzi, A., Edwards, P.: Sample sufficiency and number of modes to retain in statistical shape modelling. In: Metaxas, D., Axel, L., Fichtinger, G., Szkely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2008. Lecture Notes in Computer Science, vol. 5241, pp. 425–433. Springer, Berlin (2008) CrossRefGoogle Scholar
  56. 56.
    Muralidhar, G.S., Bovik, A.C., Giese, J.D., Sampat, M.P., Whitman, G.J., Haygood, T.M., Stephens, T.W., Markey, M.K.: Snakules: a model-based active contour algorithm for the annotation of spicules on mammography. IEEE Trans. Med. Imaging 29, 1768–1780 (2010) CrossRefGoogle Scholar
  57. 57.
    Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. Monographs on Mathematical Modeling and Computation. SIAM, Philadelphia (2001) Google Scholar
  58. 58.
    Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006) CrossRefGoogle Scholar
  59. 59.
    Olabarriaga, S.D., Smeulders, A.W.M.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001) CrossRefGoogle Scholar
  60. 60.
    Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003) CrossRefGoogle Scholar
  61. 61.
    Pelizzari, C.A., Tan, K.K., Levin, D.N., Chen, G.T.Y., Balter, J.: Interactive 3D patient-image registration. In: Colchester, A.C.F., Hawkes, D.J. (eds.) Information Processing in Medical Imaging, pp. 133–141. Springer, Berlin (1991) Google Scholar
  62. 62.
    Peters, J., Ecabert, O., Meyer, C., Schramm, H., Kneser, R., Groth, A., Weese, J.: Automatic whole heart segmentation in static magnetic resonance image volumes. In: Proceedings MICCAI, pp. 402–410 (2007) Google Scholar
  63. 63.
    Peters, T.M., Cleary, K.R.: Image-Guided Interventions: Technology and Applications. Springer, Berlin (2008) CrossRefGoogle Scholar
  64. 64.
    Pham, D.L., Xu, C., Prince, J.L.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–338 (2000) CrossRefGoogle Scholar
  65. 65.
    Pratt, P., Mayer, E., Vale, J., Cohen, D., Edwards, E., Darzi, A., Yang, G.Z.: An effective visualisation and registration system for image-guided robotic partial nephrectomy. J. Robotic Surgery (2012) Google Scholar
  66. 66.
    Rajan, J., Poot, D., Juntu, J., Sijbers, J.: Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys. Med. Biol. 55(16), N441-9 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20679694. doi: 10.1088/0031-9155/55/16/N02 CrossRefGoogle Scholar
  67. 67.
    Rohlfing, T., Brandt, R., Maurer, C. Jr., Menzel, R.: Bee brains, b-splines and computational democracy: generating an average shape atlas. In: Proceedings MMBIA, pp. 187–194 (2001) Google Scholar
  68. 68.
    Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R. Jr.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21, 1428–1442 (2004) CrossRefGoogle Scholar
  69. 69.
    Roth, H., McClelland, J., Modat, M., Boone, D., Hu, M., Ourselin, S., Slabaugh, G.G., Halligan, S., Hawkes, D.J.: Establishing spatial correspondence between the inner colon surfaces from prone and supine ct colonography. In: Proceedings MICCAI (Beijing), pp. 497–504 (2010) Google Scholar
  70. 70.
    Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging 22, 1014–1025 (2003) CrossRefGoogle Scholar
  71. 71.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999) CrossRefGoogle Scholar
  72. 72.
    Rhode, K., Sermesant, M.: Modeling and registration for electrophysiology procedures based on three-dimensional imaging. Curr. Cardiovasc. Imaging Rep. 4, 116–126 (2011) CrossRefGoogle Scholar
  73. 73.
    Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982) CrossRefGoogle Scholar
  74. 74.
    Slepian, D. (ed.): Key Papers in the Development of Information Theory. Reprint Series. IEEE Press, New York (1974) MATHGoogle Scholar
  75. 75.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32(1), 71–86 (1999) CrossRefGoogle Scholar
  76. 76.
    Suetens, P.: Fundamentals of Medical Imaging. Cambridge University Press, Cambridge (2002) Google Scholar
  77. 77.
    Tabakov, S., Smith, P.H.S., Milano, F., Strand, S.E., Lewis, C. (eds.): Encyclopedia of Medical Physics. Taylor & Francis, London (2012). ISBN 9781439846520 http://www.emitel2.eu/. available [Online] Google Scholar
  78. 78.
    Tao, X., Prince, J.L., Davatzikos, C.: Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain. IEEE Trans. Med. Imaging 21, 513–524 (2002) CrossRefGoogle Scholar
  79. 79.
    Viola, P.A., Wells, W.M.: Alignment by maximisation of mutual information. In: Proceedings of the 5th International Conference on Computer Vision, pp. 15–23 (1995) Google Scholar
  80. 80.
    Weickert, J., Laidlaw, D. (eds.): Visualization and Processing of Tensor Fields. II. Mathematics+Visualization. Springer, Berlin (2009) Google Scholar
  81. 81.
    Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Mathematics+Visualization. Springer, Berlin (2006) Google Scholar
  82. 82.
    Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature estimation. CVGIP, Image Underst. 55, 14–26 (1992) MATHCrossRefGoogle Scholar
  83. 83.
    Xu, C., Pham, D.L., Rettmann, M.E., Yu, D.N., Prince, J.L.: Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans. Med. Imaging 18, 467–480 (1999) CrossRefGoogle Scholar
  84. 84.
    Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006) CrossRefGoogle Scholar
  85. 85.
    Zhu, X.J., Zhang, P.F., Shao, J.H., Cheng, Y.Z., Zhang, Y., Bai, J.: A snake-based method for segmentation of intravascular ultrasound images and its in vivo validation. Ultrasonics 51, 181–189 (2011) CrossRefGoogle Scholar
  86. 86.
    Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imaging 29, 1612–1625 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Philip G. Batchelor
    • 1
  • P. J. “Eddie” Edwards
    • 2
  • Andrew P. King
    • 1
  1. 1.King’s CollegeLondonUK
  2. 2.Imperial CollegeLondonUK

Personalised recommendations