Skip to main content

Transmission Electron Microscopy: A Multifunctional Tool for the Atomic-scale Characterization of Nanoalloys

  • Chapter
  • First Online:
Book cover Nanoalloys

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Nanoalloys are attracting increasing attention because of the immense technological potential that arises from combination of size effects with composition effects. However, the design of nanosystems with new and tunable properties requires understanding the complex phenomena that influence the size, shape, composition, and atomic structure of multimetallic alloy cluster. In that regard, Transmission Electron Microscope (TEM) is one of the most complete characterization tools for studying nanoalloys. Here we will detail how TEM gives access to morphological, structural and chemical information on individually analyzed nanoparticles. We will describe the principle, advantages and limits of the different presented techniques. To finish, we will shed light on the outstanding performances of the recently developed aberration corrected microscopes that provide unprecedented opportunities to analyze dynamical processes at high resolution and atomic scale-chemistry in nanoalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EDX spectrum imaging is similar in principle to EELS spectrum imaging, but instead of acquiring an EELS spectrum at each pixel (Sect. 4.2.2), one acquires an X-ray spectrum. Similarly, post-acquisition processing of the obtained spectrum imaging data cube allows the production of chemical maps.

References

  1. Knoll, M., Ruska, E.: Das Elektronenmikroskop. Zeitschrift für Physik A Hadrons and Nuclei 78(5–6), 318 (1932)

    Google Scholar 

  2. Hirsch, P., Howie, A., Nicholson, R., Whelan, M.J.: Electron Microscroscopy of Thin Crystals. Krieger Publushing Company, Malabar (1965)

    Google Scholar 

  3. Willams, B., Barry Carter, C.: Transmission Electron Microscopy, vol. 1–4. Plenum, New York (1996)

    Google Scholar 

  4. Reimer, L.: Transmission Electron Microscopy, 4th edn. Springer, Berlin (1997)

    Google Scholar 

  5. Egerton, R.F.: Electron Energy-loss Spectroscopy in the Electron Microscope. Plenum Press, New York and London (1986)

    Google Scholar 

  6. Kirkland, A.I.: Nanocharacterisation. Royal Society of Chemistry, Cambridge (2007)

    Google Scholar 

  7. Shindo, D., Oikawa, T.: Analytical Electron Microscopy for Materials Science. Springer, Tokyo (2002)

    Google Scholar 

  8. Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104(6), 1153–1175 (2000)

    Article  Google Scholar 

  9. Wang, Z.L.: Characterization of Nanophase Materials. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  10. Ayache, J., Beaunier, L., Boumendil, J., Ehret, G., Laub, D.: Sample Preparation Handbook for Transmission Electron Microscopy. Springer, New York (2010)

    Book  Google Scholar 

  11. Alloyeau, D., Freitag, B., Dag, S., Wang, L.W., Kisielowski, C.: Atomic-resolution three-dimensional imaging of germanium self-interstitials near a surface: Aberration-corrected transmission electron microscopy. Phys. Rev. B 80, 014114 (2009)

    Article  Google Scholar 

  12. Browning, N.D., Arslan, I., Erni, R., Idrobo, J.C., Ziegler, A., Bradley, J., Dai, Z., Stach, E.A., Bleloch, A.: Monochromators and aberration correctors: Taking EELS to new levels of energy and spatial resolution. In: Brown, P.D., Baker, R., Hamilton, B. (eds.) EMAG-NANO 2005: Imaging, Analysis and Fabrication on the Nanoscale, vol. 26. Journal of Physics Conference Series, pp. 59–64. Iop Publishing Ltd, Bristol (2006)

    Google Scholar 

  13. Kimoto, K., Ishizuka, K., Asaka, T., Nagai, T., Matsui, Y.: 0.23 eV energy resolution obtained using a cold field-emission gun and a streak imaging technique. Micron 36(5), 465–469 (2005)

    Article  Google Scholar 

  14. Kimoto, K., Kothleitner, G., Grogger, W., Matsui, Y., Hofer, F.: Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy. Micron 36(2), 185–189 (2005)

    Article  Google Scholar 

  15. Konno, M., Suzuki, Y., Inada, H., Nakamura, K.: Application of 80–200 kV aberration corrected dedicated STEM with cold FEG. Electron Microscopy and Analysis Group Conference 2009, vol. 241. Journal of Physics Conference Series. Iop Publishing Ltd, Bristol (2010)

    Google Scholar 

  16. Sato, K., Bian, B., Hirotsu, Y.: Fabrication of oriented L10-FePt and FePd nanoparticles with large coercivity. J. Appl. Phys. 91, 8516–8518 (2002)

    Article  Google Scholar 

  17. Demortiere, A., Petit, C.: CoPt magnetic nanocrystals in the A1/L1(0) transformation. J. Appl. Phys. 109(8), 9 (2011)

    Article  Google Scholar 

  18. Habrioux, A., Vogel, W., Guinel, M., Guetaz, L., Servat, K., Kokoh, B., Alonso-Vante, N.: Structural and electrochemical studies of Au-Pt nanoalloys. Phys. Chem. Chem. Phys. 11(18), 3573–3579 (2009)

    Article  Google Scholar 

  19. Langlois, C., Alloyeau, D., Le Bouar, Y., Loiseau, A., Oikawa, T., Mottet, C., Ricolleau, C.: Growth and structural properties of CuAg and CoPt bimetallic nanoparticles. Faraday Discuss 138, 375–391 (2008)

    Article  Google Scholar 

  20. Penuelas, J., Andreazza-Vignolle, C., Andreazza, P., Ouerghi, A., Bouet, N.: Temperature effect on the ordering and morphology of CoPt nanoparticles. Surf. Sci. 602(2), 545–551 (2008)

    Article  Google Scholar 

  21. Tournus, F., Bardotti, L., Dupuis, V.: Size-dependent morphology of CoPt cluster films on graphite: A route to self-organization. J. Appl. Phys. 109(11), 4 (2011)

    Article  Google Scholar 

  22. Alloyeau, D., Ricolleau, C., Langlois, C., Le Bouar, Y., Loiseau, A.: Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles. Beilstein J. Nanotechnol. 1, 55–59 (2010)

    Article  Google Scholar 

  23. Takahashi, Y.H., Ohkubo, T., Ohnuma, M., Hono, K.: Size effectSize effect on the ordering of FePtFePt granular films. J. Appl. Phys. 93, 7166 (2003)

    Article  Google Scholar 

  24. Desvaux, C., Dumestre, F., Amiens, C., Respaud, M., Lecante, P., Snoeck, E., Fejes, P., Renaud, P., Chaudret, B.: FeCo nanoparticles from an organometallic approach: Synthesis, organisation and physical properties. J. Mater. Chem. 19(20), 3268–3275 (2009)

    Article  Google Scholar 

  25. Alloyeau, D., Langlois, C., Ricolleau, C., Le Bouar, Y., Loiseau, A.: A TEM in situ experiment as a guideline for the synthesis of as-grown ordered CoPtCoPt nanoparticles. Nanotechnology 18(37), 375301 (2007)

    Article  Google Scholar 

  26. Sato, K., Kovács, A., Hirotsu, Y.: Order-disorder transformation in Fe-Pd alloy nanoparticles studied by in situ transmission electron microscopy. Thin Solid Films 519(10), 3305–3311 (2011)

    Article  Google Scholar 

  27. Sellmyer, D.J., Yu, M., Kirby, R.D.: Nanostructured magnetic films for extremely high density recording. Nanostruct. Mater. 12(5–8), 1021–1026 (1999)

    Article  Google Scholar 

  28. Gai, P.L., Kourtakis, K.: Solid-state defect mechanism in vanadyl pyrophosphate catalyst—implications for selective ixidation. Science 267(5198), 661–663 (1995)

    Article  Google Scholar 

  29. Gai, P.L., Boyes, E.D., Helveg, S., Hansen, P.L., Giorgio, S., Henry, C.R.: Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 32(12), 1044–1050 (2007)

    Article  Google Scholar 

  30. Cabie, M., Giorgio, S., Henry, C.R., Axet, M.R., Philippot, K., Chaudret, B.: Direct observation of the reversible changes of the morphology of Pt nanoparticles under gas environment. J. Phys. Chem. C 114(5), 2160–2163 (2010)

    Article  Google Scholar 

  31. Giorgio, S., Cabie, M., Henry, C.R.: Dynamic observations of Au catalysts by environmental electron microscopy. Gold Bull. 41(2), 167–173 (2008)

    Article  Google Scholar 

  32. Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., Topsoe, H.: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002)

    Article  Google Scholar 

  33. Gai, P.L.: Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8(1), 21–28 (2002)

    Article  Google Scholar 

  34. Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M.: Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2(8), 532–536 (2003)

    Article  Google Scholar 

  35. Zheng, H.M., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P.: Observation of single colloidal platinum nanocrystal Growth trajectories. Science 324(5932), 1309–1312 (2009)

    Article  Google Scholar 

  36. Ascencio, J.A., Gutiérrez-Wing, C., Espinosa, M.E., Marín, M., Tehuacanero, S., Zorrilla, C., José-Yacamán, M.: Structure determination of small particles by HREM imaging: theory and experiment. Surf. Sci. 396(1–3), 349–368 (1998)

    Article  Google Scholar 

  37. Reyes-Gasga, J., Tehuacanero-Nunez, S., Montejano-Carrizales, J.M., Gao, X.X., Jose-Yacaman, M.: Analysis of the contrast in icosahedral gold nanoparticles. Top. Catal. 46(1–2), 23–30 (2007)

    Article  Google Scholar 

  38. Wang, R., Zhang, H., Farle, M., Kisielowski, C.: Structural stability of icosahedral FePtFePt nanoparticles. Nanoscale 1(2), 276–279 (2009)

    Article  Google Scholar 

  39. Wang, R.M., Dmitrieva, O., Farle, M., Dumpich, G., Ye, H.Q., Poppa, H., Kilaas, R., Kisielowski, C.: Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 100(1), 4 (2008)

    Google Scholar 

  40. Mejia-Rosales, S.J., Fernandez-Navarro, C., Perez-Tijerina, E., Blom, D.A., Allard, L.F., Jose-Yacaman, M.: On the structure of Au/Pd bimetallic nanoparticles. J. Phys. Chem. C 111(3), 1256–1260 (2007)

    Article  Google Scholar 

  41. Dmitrieva, O., Rellinghaus, B., Kastner, J., Dumpich, G.: Quantitative structure analysis of L1(0)-ordered FePt nanoparticles by HRTEM. J. Cryst. Growth 303(2), 645–650 (2007)

    Article  Google Scholar 

  42. Saha, D.K., Koga, K., Takeo, H.: Stable icosahedral nanoparticles in an as-grown Au–Fe alloy. Eur. Phys. J. D 9(1–4), 539–542 (1999)

    Article  Google Scholar 

  43. Rellinghaus, B., Dmitrieva, O., Stappert, S.: Destabilization of icosahedral structures in FePtFePt multiply twinned particles. J. Cryst. Growth 262(1–4), 612–619 (2004)

    Article  Google Scholar 

  44. Langlois, C., Oikawa, T., Bayle-Guillemaud, P., Ricolleau, C.: Energy-filtered electron microscopy for imaging core–shell nanostructures. J. Nanoparticles Res. 10(6), 997–1007 (2008)

    Article  Google Scholar 

  45. Scherzer, O.: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20(1), 20 (1949)

    Article  MATH  Google Scholar 

  46. Gratias, D., Portier, R.: Time-like perturbation method in high-energy electron-diffraction. Acta Crystallogr. Sect. A 39, 576–584 (1983). (JUL)

    Article  Google Scholar 

  47. Stadelmann, P.A.: EMS—a software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21(2), 131–145 (1987)

    Article  Google Scholar 

  48. Vandyck, D.: Fast computational procedures for the simulation of structure images in complex or disordered crystals—a new aproach. J. Microsc-Oxf. 119(MAY), 141–152 (1980)

    Google Scholar 

  49. Biskupek, J., Jinschek, J.R., Wiedwald, U., Bendele, M., Han, L., Ziemann, P., Kaiser, U.: Identification of magnetic properties of few nm sized FePt crystalline particles by characterizing the intrinsic atom order using aberration corrected S/TEM. Ultramicroscopy 110(7), 820–825 (2010)

    Article  Google Scholar 

  50. Blanc, N., Tournus, F., Dupuis, V.: Measuring the L1(0) chemical order parameter of a single CoPt nanoparticle smaller than 4 nm. Phys. Rev. B 83(9), 092403 (2011)

    Article  Google Scholar 

  51. Colak, L., Hadjipanayis, G.C.: Evolution of texture and atomic order in annealed sinter-free FePt nanoparticles. Nanotechnology 19(23), 235703 (2008)

    Article  Google Scholar 

  52. Miyazaki, T., Kitakami, O., Okamoto, S., Shimada, Y., Akase, Z., Murakami, Y., Shindo, D., Takahashi, Y.K., Hono, K.: Size effectSize effect on the ordering of L10 FePt nanoparticles. Phys. Rev. B (Condens Matter Mater. Phys.) 72(14), 144419 (2005)

    Article  Google Scholar 

  53. Sato, K., Hirotsu, Y., Mori, H., Wang, Z., Hirayama, T.: Determination of order parameter of L10 FePd nanoparticles by electron diffraction. J. Appl. Phys. 97(8), 084301 (2005)

    Article  Google Scholar 

  54. Sato, K., Hirotsu, Y., Mori, H., Wang, Z., Hirayama, T.: Long-range order parameter of single L10-FePd nanoparticle determined by nanobeam electron diffraction: Particle size dependence of the order parameter. J. Appl. Phys. 98(2), 024308 (2005)

    Article  Google Scholar 

  55. Alloyeau, D., Ricolleau, C., Oikawa, T., Langlois, C., Le Bouar, Y., Loiseau, A.: STEM nanodiffraction technique for structural analysis of CoPt nanoparticles. Ultramicroscopy 108(7), 656–662 (2008)

    Article  Google Scholar 

  56. Ganesh, K.J., Kawasaki, M., Zhou, J.P., Ferreira, P.J.: D-STEM: A parallel electron diffraction technique applied to nanomaterials. Microsc. Microanal. 16(05), 614–621 (2010)

    Article  Google Scholar 

  57. Alloyeau, D., Ricolleau, C., Mottet, C., Oikawa, T., Langlois, C., Le Bouar, Y., Braidy, N., Loiseau, A.: Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. Nat. Mater. 8(12), 940–946 (2009)

    Article  Google Scholar 

  58. Sato, K.: Magnetic nanoparticles: When atoms move around. Nat. Mater. 8(12), 924–925 (2009)

    Article  Google Scholar 

  59. Cliff, G., Lorimer, G.W.: Quantitative analysis of thin specimen. J. Microsc. 1032, 203–207 (1975)

    Article  Google Scholar 

  60. Van Cappellen, E.: The parameterless correction method in X-ray microanalysis. Microsc. Microanal. Microstruct. 1(1), 1–22 (1990)

    Article  Google Scholar 

  61. Alloyeau, D., Prévot, G., Le Bouar, Y., Oikawa, T., Langlois, C., Loiseau, A., Ricolleau, C.: Ostwald ripening in nanoalloys: When thermodynamics drives a size-dependent particle composition. Phys. Rev. Lett. 105(25), 255901 (2010)

    Article  Google Scholar 

  62. Di Vece, M., Bals, S., Verbeeck, J., Lievens, P., Van Tendeloo, G.: Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation. Phys. Rev. B 80(12), 125420 (2009)

    Article  Google Scholar 

  63. Herzing, A.A., Watanabe, M., Edwards, J.K., Conte, M., Tang, Z.-R., Hutchings, G.J., Kiely, C.J.: Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss. 138, 337–351 (2008)

    Article  Google Scholar 

  64. Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Article  Google Scholar 

  65. Che, R., Peng, L.M., Chen, Q., Duan, X.F., Gu, Z.N.: Fe2O3 particles encapsulated inside aligned CNx nanotubes. Appl. Phys. Lett. 82(19), 3319–3321 (2003)

    Article  Google Scholar 

  66. Trasobares, S., López-Haro, M., Kociak, M., March, K., de La Peña, F., Perez-Omil, J.A., Calvino, J.J., Lugg, N.R., D’Alfonso, A.J., Allen, L.J., Colliex, C.: Chemical imaging at atomic resolution as a technique to refine the local structure of nanocrystals. Angew. Chem. Int. Ed. 50(4), 868–872 (2011)

    Google Scholar 

  67. Cho, S.-J., Idrobo, J.-C., Olamit, J., Liu, K., Browning, N.D., Kauzlarich, S.M.: Growth mechanisms and oxidation resistance of gold-Coated iron nanoparticles. Chem. Mater. 17(12), 3181–3186 (2005)

    Article  Google Scholar 

  68. Langlois, C., et al.: HAADF-STEM imaging of CuAg core-shell nanoparticles. J. Phys. Conf. Ser. 241(1), 012043 (2010)

    Article  MathSciNet  Google Scholar 

  69. Michel, B., et al.: Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18(16), 165505 (2007)

    Article  Google Scholar 

  70. Nelayah, J., Gu, L., Sigle, W., Koch, C.T., Pastoriza-Santos, I., Liz-Marzán, L.M., van Aken, P.A.: Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Opt. Lett. 34(7), 1003–1005 (2009)

    Article  Google Scholar 

  71. Nelayah, J., Kociak, M., Stephan, O., Garcia de Abajo, F.J., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzan, L.M., Colliex, C.: Mapping surface plasmons on a single metallic nanoparticle. Nat.Phys. 3(5), 348–353 (2007)

    Google Scholar 

  72. N’Gom, M., Li, S., Schatz, G., Erni, R., Agarwal, A., Kotov, N., Norris, T.B.: Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Phys. Rev. B 80(11), 113411 (2009)

    Article  Google Scholar 

  73. Cao, L.-F., Xie, D., M-X., G., Park, H.-S., Fujita1, T.: Size and shape effects on Curie temperature of ferromagnetic nanoparticles. Trans. Nonferrous Met. Soc. China 17(6), 1451 (2007)

    Google Scholar 

  74. Oldenburg, S.J., Averitt, R.D., Westcott, S.L., Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288(2–4), 243–247 (1998)

    Article  Google Scholar 

  75. Kim, C., Lee, H.: Shape effectShape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catal. Commun. 11(1), 7–10 (2009)

    Article  Google Scholar 

  76. McEwen, B.F., Marko, M.: The emergence of electron tomography electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49(5), 553 (2001)

    Article  Google Scholar 

  77. Saxton, W.O., Baumeister, W., Hahn, M.: Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13(1–2), 57–70 (1984)

    Article  Google Scholar 

  78. Florea, I., Ersen, O., Hirlimann, C., Roiban, L., Deneuve, A., Houlle, M., Janowska, I., Nguyen, P., Pham, C., Pham-Huu, C.: Analytical electron tomography mapping of the SiC pore oxidation at the nanoscale. Nanoscale 2(12), 2668–2678 (2010)

    Article  Google Scholar 

  79. J. Radon: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh, K. Sachs. Ges. Wiss. Leipzig, Math. Nat. Kl 69, 262–277 (1917)

    Google Scholar 

  80. Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., Leith, A., Frank, J.: SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3(12), 1941–1974 (2008)

    Article  Google Scholar 

  81. Xu, W., Xu, F., Jones, M., Keszthelyi, B., Sedat, J., Agard, D., Mueller, K.: High-performance iterative electron tomography reconstruction with long-object compensation using graphics processing units (GPUs). J. Struct. Biol. 171(2), 142–153 (2010)

    Article  Google Scholar 

  82. Midgley, P.A., Weyland, M., Yates, T.J.V., Arslan, I., Dunin-Borkowski, R.E., Thomas, J.M.: Nanoscale scanning transmission electron tomography. J. Microsc.-Oxf. 223, 185–190 (2006)

    Article  MathSciNet  Google Scholar 

  83. Penczek, P., Marko, M., Buttle, K., Frank, J.: Double-tilt electron tomography. Ultramicroscopy 60(3), 393–410 (1995)

    Article  Google Scholar 

  84. Alloyeau, D., Ricolleau, C., Oikawa, T., Langlois, C., Le Bouar, Y., Loiseau, A.: Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles. Ultramicroscopy 109(7), 788–796 (2009)

    Article  Google Scholar 

  85. Harauz, G., Van Heel, M.: Exact filters for general geometry three dimensional reconstruction. Optik 73, 146 (1986)

    Google Scholar 

  86. Sousa, D., Grigorieff, N.: Ab initio resolution measurement for single particle structures. J. Struct. Biol. 157(1), 201–210 (2007)

    Article  Google Scholar 

  87. Hernandez, J.C., Moreno, M.S., Coronado, E.A., Midgley, P.A.: STEM electron tomography of gold nanostructures European Microscopy Congres, p. 311. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  88. Erni, R., Rossell, M.D., Kisielowski, C., Dahmen, U.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)

    Article  Google Scholar 

  89. Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P., Dahmen, U.: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14(05), 469–477 (2008)

    Article  Google Scholar 

  90. Gontard, L.C., Chang, L.Y., Hetherington, C.J.D., Kirkland, A.I., Ozkaya, D., Dunin-Borkowski, R.E.: Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem.-Int. Ed. 46(20), 3683–3685 (2007)

    Google Scholar 

  91. Kisielowski, C., Ramasse, Q.M., Hansen, L.P., Brorson, M., Carlsson, A., Molenbroek, A.M., Topsoe, H., Helveg, S.: Imaging MoS(2) nanocatalysts with single-atom sensitivity. Angew. Chem.-Int. Edit. 49(15), 2708–2710 (2010)

    Google Scholar 

  92. Specht, P., Gulotty, R.J., Barton, D., Cieslinski, R., Rozeveld, S., Kang, J.H., Dubon, O.D., Kisielowski, C.: Quantitative contrast evaluation of an industry-style rhodium Nanocatalyst with single atom sensitivity. ChemCatChem. 3(6), 1034–1037 (2011)

    Article  Google Scholar 

  93. Gai, P.L., Boyes, E.D.: Advances in atomic resolution in situ environmental transmission electron microscopy and 1 angstrom aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72(3), 153–164 (2009)

    Article  Google Scholar 

  94. Gai, P.L., Boyes, E.D.: Angstrom analysis with dynamic in situ aberration corrected electron microscopy. Electron Microscopy and Analysis Group Conference 2009, vol. 241. Journal of Physics Conference Series. Iop Publishing Ltd, Bristol (2010)

    Google Scholar 

  95. Shiju, N.R., Yoshida, K., Boyes, E.D., Brown, R., Gai, P.L.: Dynamic atomic scale in situ electron microscopy in the development of an efficient heterogeneous catalytic process for pharmaceutical NSAIDS. Catal. Sci. Technol. 1(3), 413–425 (2011)

    Article  Google Scholar 

  96. Kisielowski, C., Specht, P., Alloyeau, D., Erni, R., Ramasse, Q.: Aberration-corrected electron microscopy imaging for nanoelectronics applications. In: Erik, M.S., David, G.S., Rajinder, P.K., Dan, H., Garner, C.M., Robert, M., Alain, C.D. (eds.) pp. 231–240. American Institute of Physics, Merville, USA (2009)

    Google Scholar 

  97. Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G., Zettl, A.: Graphene at the edge: Stability and dynamics. Science 323(5922), 1705–1708 (2009)

    Google Scholar 

  98. Lee, Z., Jeon, K.J., Dato, A., Erni, R., Richardson, T.J., Frenklach, M., Radmilovic, V.: Direct imaging of soft-hard interfaces enabled by graphene. Nano Lett. 9(9), 3365–3369 (2009)

    Article  Google Scholar 

  99. Li, Z.Y., Young, N.P., Di Vece, M., Palomba, S., Palmer, R.E., Bleloch, A.L., Curley, B.C., Johnston, R.L., Jiang, J., Yuan, J.: Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451(7174), 46–48 (2008)

    Article  Google Scholar 

  100. Ferrer, D., Blom, D.A., Allard, L.F., Mejia, S., Perez-Tijerina, E., Jose-Yacaman, M.: Atomic structureAtomic structure of three-layer Au/Pd nanoparticles revealed by aberration-corrected scanning transmission electron microscopy. J. Mater. Chem. 18(21), 2442–2446 (2008)

    Article  Google Scholar 

  101. Liu, J.: Advanced electron microscopy of metal–support Interactions in supported metal catalysts. ChemCatChem 3(6), 934–948 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Alloyeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Alloyeau, D. (2012). Transmission Electron Microscopy: A Multifunctional Tool for the Atomic-scale Characterization of Nanoalloys. In: Alloyeau, D., Mottet, C., Ricolleau, C. (eds) Nanoalloys. Engineering Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4014-6_4

Download citation

Publish with us

Policies and ethics