Nanoalloys pp 25-68 | Cite as

Bimetallic Nanoparticles, Grown Under UHV on Insulators, Studied by Scanning Probe Microscopy

  • Claude Henry
  • Clemens Barth
Part of the Engineering Materials book series (ENG.MAT.)


Nowadays scanning probe microscopies (atomic force microscopy and scanning tunnelling microscopy) are common techniques to characterize at the atomic level the structure of surfaces. In the last years, these techniques have been applied to study the nucleation and growth of metal clusters (mono or bimetallic). Basic elements of scanning probe microscopy will be presented. With the help of the atomistic nucleation theory and using some earlier results obtained by TEM we show that the growth rate and the composition evolution of bimetallic particles grown from two atomic vapours sequentially or simultaneously condensed on insulating substrates (bulk or ultrathin film) can be predicted. The published work on the growth of bimetallic particles studied by STM and AFM is presented in a comprehensive way giving simple rules to select the best method to obtain homogeneous assemblies of nanoparticles with given mean sizes and chemical compositions. Although the application of scanning probes microscopy to the growth of supported bimetallic particles is relatively young, recent development of AFM and STM techniques paves the way for a complete in situ characterization, including morphology and surface composition.


Atomic Force Microscope Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Bimetallic Nanoparticles Contact Potential Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)Google Scholar
  2. 2.
    Hansma, P.K., Tersoff, J.: Scanning tunneling microscopy. J. Appl. Phys. 61, R1 (1986)Google Scholar
  3. 3.
    Feenstra, R.M.: Scanning tunneling spectroscopy. Surf. Sci. 299–300, 965 (1994)Google Scholar
  4. 4.
    Komeda, T.: Chemical identification and manipulation of molecules by vibrational excitation via inelastic tunneling process with scanning tunneling microscopy. Prog. Surf. Sci. 78, 41 (2005)Google Scholar
  5. 5.
    Tsukada, M., Kobayashi, K., Isshiki, N., Kageshima, H.: First-principles theory of scanning tunneling microscopy. Surf. Sci. Rep. 13, 265 (1991)Google Scholar
  6. 6.
    Hofer, W.A., Foster, A.S., Shluger, A.L.: Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287 (2003)Google Scholar
  7. 7.
    Wiesendanger, R.: Scanning Probe Microscopy and Spectroscopy. Cambridge University Press, Cambridge (1994)Google Scholar
  8. 8.
    Chen, C.J.: Introduction to Scanning Tunneling microscopy. Oxford University Press, New York (2008)Google Scholar
  9. 9.
    Africh, C., Kohler, L., Esch, F., Corso, M., Dri, C., Bucko, T., Kresse, G., Comelli, G.: Effects of lattice expansion on the reactivity of a one-dimensional oxide. J. Amer. Chem. Soc. 131, 3253 (2009)Google Scholar
  10. 10.
    Crommie, M.F., Lutz, C.P., Eigler, D.M.: Confinement of electrons to quantum corrals on a metal surface. Science 262, 218 (1993)Google Scholar
  11. 11.
    Varga, P., Schmid, M.: Chemical discrimination on atomic level by STM. Appl. Surf. Sci. 141, 287 (1999)Google Scholar
  12. 12.
    Hallmark, V.M., Chiang, S., Rabolt, J.B., Swalen, J.D., Wilson, R.J.: Observation of atomic corrugation on Au (111) by scanning tunneling microscopy. Phys. Rev. Lett. 59, 2879 (1987)Google Scholar
  13. 13.
    Schmid, M., Stadler, H., Varga, P.: Direct observation of surface chemical order by scanning tunnelling microscopy. Phys. Rev. Lett. 70, 1441 (1993)Google Scholar
  14. 14.
    Hebenstreit, E.L.D., Hebenstreit, W., Schmid, M., Varga, P.: Pt25Rh75(111), (110) and (100) studied by scanning tunnelling microscopy with chemical contrast. Surf. Sci. 441, 441 (1999)Google Scholar
  15. 15.
    Wouda, P.T., Schmid, M., Nieuwenhuys, B.E., Varga, P.: STM study of the (111) and (100) surface of AgPd. Surf. Sci. 417, 292 (1998)Google Scholar
  16. 16.
    Gauthier, Y., Baudoing-Savois, R., Bugnard, J.M., Hebenstreit, W., Schmid, M., Varga, P.: Segregation and chemical ordering in the surface layers of Pd25Co75(111): a LEED/STM study. Surf. Sci. 466, 155 (2000)Google Scholar
  17. 17.
    Ondracek, M., Maca, F., Kudrnovsky, J., Redinger, J., Biedermann, A., Fritscher, C., Schmid, M., Varga, P.: Chemical ordering and composition fluctuations on the (001) surface of the Fe64Ni36 invar alloy. Phys. Rev. B 74, 235437 (2006)Google Scholar
  18. 18.
    Murray, P.W., Stesgaard, I., Laegsgaard, E., Besenbacher, F.: Growth and structure of Pd alloys on Cu(100). Surf. Sci. 365, 591 (1996)Google Scholar
  19. 19.
    Hoster, H.E., Filonenko, E., Richter, B., Behm, R.J.: Formation and short-range order of two-dimensional CuxPd1-x monolayer surface alloys on Ru(0001). Phys. Rev. B 73, 165413 (2006)Google Scholar
  20. 20.
    Hebenstreit, W., Schmid, M., Redinger, J., Podloucky, R., Varga, P.: Bulk terminated NaCl(111) on aluminum: a polar surface of a ionic crystal? Phys. Rev. Lett. 85, 5376 (2000)Google Scholar
  21. 21.
    Schintke, S., Schneider, W.-D.: Insulators at the ultrathin limit: electronic structure studied by scanning tunnelling microscopy and scanning tunnelling spectroscopy. J. Phys. Condens. Matter 16, R49 (2004)Google Scholar
  22. 22.
    Kresse, G., Schmid, M., Napetshnig, A., Shishkin, M., Köhler, L., Varga, P.: Structure of ultrathin aluminum oxide film on NiAl(110). Science 308, 1440 (2005)Google Scholar
  23. 23.
    Wintterlin, J., Völkening, S., Janssens, T.U.V., Zambelli, T., Ertl, G.: Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278, 1931 (1997)Google Scholar
  24. 24.
    Stipe, B.C., Razaei, M.A., Ho, W.: Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732 (1998)Google Scholar
  25. 25.
    Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524 (1990)Google Scholar
  26. 26.
    Hahn, J.R., Ho, W.: Single-molecule imaging and vibrational spectroscopy with a chemically modified tip of scanning tunnelling microscope. Phys. Rev. Lett. 87, 196102 (2001)Google Scholar
  27. 27.
    Nilius, N., Wallis, T.M., Ho, W.: Building alloys from single atoms: Au-Pd chains on NiAl(110). J. Phys. Chem. B 108, 14616 (2004)Google Scholar
  28. 28.
    Hla, S.W., Bartels, L., Meyer, G., Rieder, K.H.: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: toward single molecule engineering. Phys. Rev. Lett. 85, 2777 (2000)Google Scholar
  29. 29.
    Katano, S., Kim, Y., Hori, M., Trenary, M., Kawai, M.: Reversible control of hydrogenation of a single molecule. Science 316, 1883 (2007)Google Scholar
  30. 30.
    Binnig, G., Quate, C.F., Gerber, Ch.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)Google Scholar
  31. 31.
    Morita, S., Wiesendanger, R., Meyer, E.: Noncontact Atomic Force Microscopy. Springer, Berlin (2002)Google Scholar
  32. 32.
    Meyer, E., Hug, H.-J., Bennewitz, R.: Scanning Probe Microscopy: The Lab on a Tip. Springer, Berlin (2004)Google Scholar
  33. 33.
    Shluger, A.L., Livshits, A.I., Foster, A.S., Catlow, C.R.A.: Models of image contrast in scanning force microscopy on insulators. J. Phys. Condens. Matter 11, R295 (1999)Google Scholar
  34. 34.
    Howald, L., Haefke, H., Lüthi, R., Meyer, E., Gerth, G., Rudin, H., Güntherodt, H.-J.: Ultra-high vacuum scanning force microscopy: atomic-scale resolution at monoatomic cleavage steps. Phys. Rev. B 49, 5651 (1994)Google Scholar
  35. 35.
    Albrecht, T.R., Grütter, P., Horne, D., Rugar, D.: Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)Google Scholar
  36. 36.
    Oyabu, N., Custance, Ó., Yi, I., Sugawara, Y., Morita, S.: Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003)Google Scholar
  37. 37.
    Giessibl, F.J.: Atomic resolution of the silicon (111)−(7×7) surface by atomic force microscopy. Science 267, 68 (1995)Google Scholar
  38. 38.
    Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003)Google Scholar
  39. 39.
    Bonnell, D.A., Garra, J.: Scanning probe microscopy of oxide surfaces: atomic structure and properties. Rep. Prog. Phys. 71, 044501 (2008)Google Scholar
  40. 40.
    Lauritsen, J.V., Reichling, M.: Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J. Phys. Condens. Matter 22, 263001 (2010)Google Scholar
  41. 41.
    Barth, C., Foster, A.S., Henry, C., Shluger, A.L.: Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23, 477 (2011)Google Scholar
  42. 42.
    Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Pérez, R., Morita, S., Custance, Ó.: Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64 (2007)Google Scholar
  43. 43.
    Sugimoto, Y., Pou, P., Custance, Ó., Jelinek, P., Morita, S., Pérez, R., Abe, M.: Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: the case of the α-Sn/Si(11)-(√3x√3)R30° surface. Phys. Rev. B 73, 205329 (2006)Google Scholar
  44. 44.
    Barth, C., Foster, A.S., Reichling, M., Shluger, A.L.: Contrast formation in atomic resolution scanning force microscopy on CaF2(111): experiment and theory. J. Phys. Condens. Matter 13, 2061 (2001)Google Scholar
  45. 45.
    Barth, C., Henry, C.: Imaging Suzuki precipitates on NaCl:Mg2+(001) by scanning force microscopy. Phys. Rev. Lett. 100, 096101 (2008)Google Scholar
  46. 46.
    Henry, C.: Morphology of supported nanoparticles. Prog. Surf. Sci. 80, 92 (2005)Google Scholar
  47. 47.
    Perrot, E., Humbert, A., Piednoir, A., Chapon, C., Henry, C.: STM and TEM studies of a model catalyst: Pd/MoS2(0001). Surf. Sci. 445, 407 (2000)Google Scholar
  48. 48.
    Hansen, K.H., Worren, T., Stempel, S., Lægsgaard, E., Bäumer, M., Freund, H.-J., Besenbacher, F., Stensgaard, I.: Palladium nanocrystals on Al2O3: structure and adhesion energy. Phys. Rev. Lett. 83, 4120 (1999)Google Scholar
  49. 49.
    Dulub, O., Hebenstreit, W., Diebold, U.: Imaging cluster surfaces with atomic resolution: the strong metal-support interaction state on Pt supported on TiO2(110). Phys. Rev. Lett. 84, 3646 (2000)Google Scholar
  50. 50.
    Silly, F., Castell, M.R.: Selecting the shape of supported metal nanocrystals: Pd huts, hexagons or pyramids on SrTiO3(001). Phys. Rev. Lett. 94, 046103 (2005)Google Scholar
  51. 51.
    Piednoir, A., Perrot, E., Granjeaud, S., Humbert, A., Chapon, C., Henry, C.: Atomic resolution on small 3D metal clusters by STM. Surf. Sci. 391, 19 (1997)Google Scholar
  52. 52.
    Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.: Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147 (1996)Google Scholar
  53. 53.
    Ferrero, S., Piednoir, A., Henry, C.: Atomic scale imaging by UHV-AFM of nanosized gold particles on mica. Nano Lett. 1, 227 (2001)Google Scholar
  54. 54.
    Højrup-Hansen, K., Ferrero, S., Henry, C.: Nucleation and Growth kinetics of gold nanoparticles on MgO(100) studied by UHV-AFM. Appl. Surf. Sci. 226, 167 (2004)Google Scholar
  55. 55.
    Barth, C., Henry, C.: High resolution imaging of gold clusters on KBr(100) surfaces investigated by dynamic scanning force microscopy. Nanotechnology 15, 1264 (2004)Google Scholar
  56. 56.
    Szymonski, M., Goryl, M., Krok, F., Kolodziej, J.J., de Mongeot, F.B.: Metal nanostructures assembled at semiconductor surfaces studied with high resolution scanning probes. Nanotechnology 18, 044016 (2007)Google Scholar
  57. 57.
    Pakarinen, O.H., Barth, C., Foster, A.S., Henry, C.: High resolution scanning force microscopy of gold nanoclusters on the KBr(001) surface. Phys. Rev. B 73, 235428 (2006)Google Scholar
  58. 58.
    Fain, Jr, S.C., Polwarth, C.A., Tait, S.L., Campbell, C.T., French, R.H.: Simulated measurement of small metal clusters by frequency-modulation non-contact atomic force microscopy. Nanotechnology 17, S121 (2006)Google Scholar
  59. 59.
    Barth, C., Pakarinen, O.H., Foster, A.S., Henry, C.: Imaging nanoclusters in the constant height mode of the dynamic SFM. Nanotechnology 17, S128 (2006)Google Scholar
  60. 60.
    Pakarinen, O.H., Barth, C., Foster, A.S., Henry, C.: Imaging the real shape of nanoclusters in scanning force microscopy. J. Appl. Phys. 103, 054313 (2008)Google Scholar
  61. 61.
    Hill, I.G., Rajagopal, A., Kahn, A., Hu, Y.: Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Lett. 73, 662 (1998)Google Scholar
  62. 62.
    Giordano, L., Cinquini, F., Pacchioni, G.: Tuning the surface metal work function by deposition of ultrathin oxide films: density functional calculations. Phys. Rev. B 73, 045414 (2005)Google Scholar
  63. 63.
    Zhang, C., Yoon, B., Landman, U.: Predicted oxidation of CO catalyzed by Au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface. J. Amer. Chem. Soc. 129, 2228 (2007)Google Scholar
  64. 64.
    Gross, L., Mohn, F., Liljeroth, P., Repp, J., Giessibl, F.J., Meyer, G.: Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428 (2009)Google Scholar
  65. 65.
    Girard, P.: Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12, 485 (2001)Google Scholar
  66. 66.
    Berger, R., Butt, H.J., Retschke, M.B., Weber, S.A.L.: Electrical modes in scanning probe microscopy. Macromol. Rapid Commun. 30, 1167 (2009)Google Scholar
  67. 67.
    Palermo, V., Palma, M., Samori, P.: Electronic characterization of organic thin films by kelvin probe force microscopy. Adv. Mater. 18, 145 (2006)Google Scholar
  68. 68.
    Melitz, W., Shen, J., Kummel, A.C., Lee, S.: Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1 (2011)Google Scholar
  69. 69.
    Weaver, J.M.R., Abraham, D.W.: High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B 9, 1559 (1991)Google Scholar
  70. 70.
    Nonnenmacher, M., O’Boyle, M.P., Wickramasinghe, H.K.: Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991)Google Scholar
  71. 71.
    Barth, C., Henry, C.: Kelvin probe force microscopy on surfaces of UHV-cleaved ionic crystals. Nanotechnology 17, S155 (2006)Google Scholar
  72. 72.
    Barth, C., Henry, C.: Surface double layer on (001) surfaces of alkali halide crystals: a scanning force microscopy study. Phys. Rev. Lett. 98, 136804 (2007)Google Scholar
  73. 73.
    Henry, C.: Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 235 (1998)Google Scholar
  74. 74.
    Heiz, U., Landman, U. (eds.): Nanocatalysis. Springer, Berlin (2007)Google Scholar
  75. 75.
    Glatzel, T., Sadewasser, S., Lux-Steiner, M.C.: Amplitude or frequency modulation-detection in Kelvin probe force microscopy. Appl. Surf. Sci. 210, 84 (2003)Google Scholar
  76. 76.
    Kitamura, S., Iwatsuki, M.: High-resolution imaging of contact potential difference with ultra high vacuum noncontact atomic force microscope. Appl. Phys. Lett. 72, 3154 (1998)Google Scholar
  77. 77.
    Krok, F., Sajewicz, K., Konior, K., Goryl, M., Piatkowski, P., Szymonski, M.: Lateral resolution and potential sensitivity in the Kelvin probe force microscopy: towards understanding of the sub-nanometer resolution. Phys. Rev. B 77, 235427 (2008)Google Scholar
  78. 78.
    Barth, C., Henry, C.: Gold nanoclusters on alkali halide surfaces: charging and tunnelling. Appl. Phys. Lett. 89, 252119 (2006)Google Scholar
  79. 79.
    Sasahara, A., Pang, C.L., Onishi, H.: Local work function of Pt clusters vacuum-deposited on a TiO2 surface. J. Phys. Chem. B 110, 17584 (2006)Google Scholar
  80. 80.
    Barth, C., Henry, C.: Kelvin force microcopy on MgO(001) surfaces and supported nanoclusters. J. Phys. Chem. C 113, 247 (2009)Google Scholar
  81. 81.
    Sasahara, A., Pang, C.L., Onishi, H.: Probe microscope observation of platinum atoms deposited on the TiO2(110)-(1x1) surface. J. Phys. Chem. B 110, 13453 (2006)Google Scholar
  82. 82.
    Bieletzki, M., Hynninen, T., Soini, T.M., Pivetta, M., Henry, C., Foster, A.S., Esch, F., Barth, C., Heiz, U.: Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM. Phys. Chem. Chem. Phys. 12, 3203 (2010)Google Scholar
  83. 83.
    Niedermayer, R., Mayer, R.: Basic problems in thin film physics. Vandenhoeck & Ruprecht, Göttingen (1966)Google Scholar
  84. 84.
    Mathews, J.W.: Epitaxial Growth Part B. Academic press, New York (1975)Google Scholar
  85. 85.
    Kern, R., Lelay, G., Métois, J.J.: Basic mechanisms in the early stages of epitaxy. In: Kaldis, E. (ed.) Current Topics in Materials Science, vol. 3, p. 131. North Holland, Amsterdam (1979) Google Scholar
  86. 86.
    Volmer, M.: Kinetic der Phasenbildung. T. Steinkopff Verlag, Leipzig (1939)Google Scholar
  87. 87.
    Zinsmeister, G.: A contribution to Frenkel’s theory of condensation. Vacuum 16, 529 (1966)Google Scholar
  88. 88.
    Frenkel, J.: Theorie der adsorption und verwandter erscheinungen. Z. Physik 26, 117 (1924)zbMATHGoogle Scholar
  89. 89.
    Robins, J.L., Rhodin, T.N.: Nucleation of metal crystals on ionic surfaces. Surf. Sci. 2, 346 (1964)Google Scholar
  90. 90.
    Henry, C.: Growth, structure and morphology of supported metal clusters studied by surface science techniques. Cryst. Res. Technol. 33, 1119 (1998)Google Scholar
  91. 91.
    Meunier, M., Henry, C.: Nucleation and growth of metallic clusters on MgO(100) by helium diffraction. Surf. Sci. 307, 514 (1994)Google Scholar
  92. 92.
    Gimenez, F., Chapon, C., Henry, C.: Nucleation and growth kinetics of Pd and CuPd particles on NaCl(100). New J. Chem. 22, 1289 (1998)Google Scholar
  93. 93.
    Haas, G., et al.: Nucleation and growth of supported clusters at defect sites: Pd/MgO(001). Phys. Rev. B 61, 11105 (2000)Google Scholar
  94. 94.
    Venables, J.A., Harding, J.H.: Nucleation and growth of supported metal clusters at defect sites on oxide and halide (001) surfaces. J. Cryst. Growth 211, 27 (2000)Google Scholar
  95. 95.
    Zinsmeister, G.: Theory of thin film condensation part C: aggregates size distribution in island films. Thin Solid Films 4, 363 (1969)Google Scholar
  96. 96.
    Halpern, V.: Cluster growth and saturation island densities in thin film growth. J. Appl. Phys. 40, 4627 (1969)Google Scholar
  97. 97.
    Sigsbee, R.A.: Adatom capture and growth rates of nuclei. J. Appl. Phys. 42, 3904 (1971)Google Scholar
  98. 98.
    Stowell, M.J.: Capture numbers in thin film nucleation theories. Phil. Mag. 26, 349 (1972)Google Scholar
  99. 99.
    Lewis, B.: Migration and capture processes in heterogeneous nucleation and growth I. Theory Surf. Sci. 21, 273 (1970)Google Scholar
  100. 100.
    Venables, J.A.: Rate equation approaches to thin film nucleation kinetics. Phil. Mag. 27, 697 (1973)Google Scholar
  101. 101.
    Lewis, B., Rees, G.: Adatom migration, capture and decay among competing nuclei on a susbtrate. Phil. Mag. 29, 1253 (1974)Google Scholar
  102. 102.
    Kashchiev, D.: Mean thickness at which vapour-deposited thin films reach continuity. Thin Solid Films 55, 399 (1978)Google Scholar
  103. 103.
    Kashchiev, D.: Growth of crystallites in deposition from vapours. Phys. Status Solidi (a) 64, 715 (1981)Google Scholar
  104. 104.
    Henry, C., Meunier M.: Power laws in the growth kinetics of metal clusters on oxide surfaces. Vacuum 50, 157 (1998)Google Scholar
  105. 105.
    Rosenhahn, A., Schneider, J., Becker, C., Wandelt, K.: Oxidation of Ni3Al(111) at 600, 800 and 1050 K investigated by scanning tunnelling microscopy. J. Vac. Sci. Technol. A 18, 7 (2000)Google Scholar
  106. 106.
    Hamm, G., Barth, C., Becker, C., Wandelt, K., Henry, C.: Power laws in the growth kinetics of metal clusters on oxide surfaces. Phys. Rev. Lett. 97, 126106 (2006)Google Scholar
  107. 107.
    Schmid, M., Kresse, G., Buchsbaum, A., Napetschning, E., Gritschneder, S., Reichling, M., Varga, P.: Nanotemplate with holes: Ultrathin alumina on Ni3Al(111). Phys. Rev. Lett. 99, 196104 (2007)Google Scholar
  108. 108.
    Sedona, F., Granozzi, G., Barcaro, G., Fortunelli, A.: Defect evolution in oxide nanophases: the case of a zigzag- like TiOx phase on Pt(111). Phys. Rev. B 77, 115417 (2008)Google Scholar
  109. 109.
    Torelli, P., Soares, E.A., Renaud, G., Gragnaniello, L., Valeri, S., Guo, X.X., Luches, P.: Self-organized growth of Ni nanoparticles on a cobalt-oxide thin film induced by a buried misfit dislocation network. Phys. Rev. B 77, 081409 (2008)Google Scholar
  110. 110.
    Becker, C., Rosenhahn, A., Wiltner, A., von Bergmann, K., Schneider, J., Pervan, P., Milun, M., Kralj, M., Wandelt, K.: Al2O3-films on Ni3Al(111): a template for nanostructured cluster growth. New J. Phys. 4, 75 (2002)Google Scholar
  111. 111.
    Hamm, G., Becker, C., Henry, C.: Pd-Au nanocluster arrays grown on nanostructured alumina templates. Nanotechnology 17, 1943 (2006)Google Scholar
  112. 112.
    Barcaro, G., Fortunelli, A., Granozzi, G., Sedona, F.: Cooperative phase transformation in self-assembled metal-on-oxide arrays. J. Phys. Chem. C 113, 1143 (2009)Google Scholar
  113. 113.
    Rohart, S., Baudot, G., Repain, V., Girard, Y., Rousset, S., Bulou, H., Goyhenex, C., Proville, L.: Atomistic mechanisms for the ordered growth of Co nanodots on Au(788): a comparison between VT-STM experiments and multiscaled calculations. Surf. Sci. 559, 47 (2004)Google Scholar
  114. 114.
    Sitja, G., Unac, R.O., Henry, C.: Kinetic Monte Carlo simulation of the growth of metal clusters on a regular array of defects on the surface of an insulator. Surf. Sci. 604, 404 (2010)Google Scholar
  115. 115.
    Anton, R., Harsdorff, M.: Extension of the kinetic nucleation model to binary alloys. Thin Solid Films 44, 341 (1977)Google Scholar
  116. 116.
    Anton, R., Harsdorff, M., Martens, T.H.: Nucleation and growth of binary alloys on substrates. Thin Solid Films 57, 233 (1979)Google Scholar
  117. 117.
    Anton, R., Dröske, R.: Nucleation of Au-Ag binary alloys from the vapour on KBr single crystals. Thin Solid Films 124, 155 (1985)Google Scholar
  118. 118.
    Kortekamp, T., Anton, R., Harsdorff, M.: Nucleation and growth of Au-Cu binary alloys from the vapour phase on NaCl single crystals. Thin Solid Films 145, 123 (1986)Google Scholar
  119. 119.
    Anton, R., Schmidt, A., Schünemann, V.: Heterogeneous nucleation of binary alloy particles. Vacuum 41, 1099 (1990)Google Scholar
  120. 120.
    Schmidt, A., Schünemann, V., Anton, R.: Monte Carlo simulation of the nucleation of binary-alloys particles of Au, Ag and Pd on NaCl substrates. Phys. Rev. B 41, 11875 (1990)Google Scholar
  121. 121.
    Schmidt, A., Spode, M., Heinrich, J., Anton, R.: The nucleation and growth of Pd-Au alloy particles on NaCl(100). Thin Solid Films 196, 253 (1991)Google Scholar
  122. 122.
    Alloyeau, D., Prévot, G., Le Bouar, Y., Oikawa, T., Langlois, C., Loiseau, A., Ricolleau, C.: Ostwald ripening in nanoalloys: when thermodynamics drives a size-dependent particle composition. Phys. Rev. Lett. 105, 255901 (2010)Google Scholar
  123. 123.
    Herzing, A.A., Watanabe, M., Edwards, J.K., Conte, M., Tang, Z.R., Hutchnings, G.J., Kiely, C.J.: Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss. 138, 337 (2008)Google Scholar
  124. 124.
    Gimenez, F., Chapon, C., Giorgio, S., Henry, C.: Bimetallic Pd-Cu clusters particles supported on NaCl. In: Proceedings ICEM 13, Paris, p. 351 (1994)Google Scholar
  125. 125.
    Gimenez, F.: Nucléation, croissance, composition et structure d’agrégats bimétalliques suopportés. Ph.D. thesis, Marseille (1997)Google Scholar
  126. 126.
    Gai, Z., Howe, J.Y., Guo, J., Blom, D.A., Plummer, E.W., Shen, J.: Self-assembled FePt nanodots arrays with mono-dispersion and -orientation. Appl. Phys. Lett. 86, 023107 (2005)Google Scholar
  127. 127.
    Gross, E., Popov, I., Ascher, M.: Chemical reactivity of Pd-Au bimetallic nanoclusters grown via amorphous solid water as buffer layer. J. Phys. Chem. C 113, 18341 (2009)Google Scholar
  128. 128.
    Abbott, H.I., Aumer, A., Lei, Y., Asokan, C., Meyer, R.J., Sterrer, M., Shaikhutdinov, S., Freund, H.-J.: CO adsorption on monometallic and bimetallic Au-Pd nanoparticles supported on oxide thin films. J. Phys. Chem. C 114, 17099 (2010)Google Scholar
  129. 129.
    Heemeier, M., Carlsson, A.F., Naschitzki, M., Schmal, M., Bäumer, M., Freund, H.-J.: Preparation and characterization of a model bimetallic catalyst: Co-Pd nanoparticles supported on Al2O3. Angew. Chem. Int. Ed. 41, 4073 (2002)Google Scholar
  130. 130.
    Carlsson, A.F., Naschitzki, M., Bäumer, M., Freund, H.-J.: The structure and reactivity of Al2O3-supported cobalt-palladium particles: a CO-TPD, STM and XPS study. J. Phys. Chem. B 107, 778 (2003)Google Scholar
  131. 131.
    Carlsson, A.F., Bäumer, M., Risse, T., Freund, H.-J.: Surface structure of Co-Pd bimetallic particles supported on Al2O3 thin films studied using infrared reflection absorption spectroscopy of CO. J. Chem. Phys. 119, 10885 (2003)Google Scholar
  132. 132.
    Napetschnig, E., Schmid, M., Varga, P.: Pd, Co and Co-Pd clusters on the ordered alumina film on NiAl(110). Contact angle, surface structure and composition. Surf. Sci. 601, 3233 (2007)Google Scholar
  133. 133.
    Felicissimo, M.P., Martyanov, O.N., Risse, T., Freund, H.-J.: Characterization of Pd-Fe bimetallic model catalysts. Surf. Sci. 601, 2105 (2007)Google Scholar
  134. 134.
    Han, P., Goodman, D.W.: Controlling the size and distribution of Pd-Au nanoparticles on TiO2(110). J. Phys. Chem. C 112, 6390 (2008)Google Scholar
  135. 135.
    Khan, N.A., Uhl, A., Shaikhutdinov, S., Freund, H.-J.: Alumina supported model Pd-Ag catalysts: a combined STM, XPS, TPD and IRAS study. Surf. Sci. 600, 1849 (2006)Google Scholar
  136. 136.
    Marsault, M., Hamm, G., Wörz, A., Sitja, G., Barth, C., Henry, C.: Preparation of regular arrays of bimetallic clusters with independent control of size and chemical composition. Faraday Discuss 138, 407 (2008)Google Scholar
  137. 137.
    Santra, A.K., Yang, F., Goodman, D.W.: The growth of Ag-Au bimetallic nanoparticles on TiO2(110). Surf. Sci. 548, 324 (2004)Google Scholar
  138. 138.
    Bassett, G.A.: A new technique for decoration of cleavage and slip steps on ionic crystal surfaces. Phil. Mag. 3, 1042 (1958)Google Scholar
  139. 139.
    Park, J.B., Ratliff, J.S., Ma, S., Chen, D.A.: In situ scanning tunneling microscopy studies of bimettalic cluster growth: Pt-Rh on TiO2(110). Surf. Sci. 600, 2913 (2006)Google Scholar
  140. 140.
    Marsault M.: Réseaux réguliers d’agrégats mono et bimétalliques sur des substrats d’alumine nanostructurée. Ph.D. thesis, Marseille (2010)Google Scholar
  141. 141.
    Degen, S., Becker, C., Wandelt, K.: Thin alumina films on Ni3Al(111): a template for nanostructured Pd clusters growth. Faraday Discuss. 125, 343 (2003)Google Scholar
  142. 142.
    Krawczyk, M., Zommer, L., Lesiak, B., Jablonski, A.: Surface composition of the CoPd alloys studied by electron spectroscopies. Surf. Interface Anal. 25, 356 (1997)Google Scholar
  143. 143.
    Diebold, U., Pan, J.M., Madey, T.E.: Growth mode of of ultrathin copper overlays on TiO2(1101). Phys. Rev. B 47, 3868 (1993)Google Scholar
  144. 144.
    Luo, K., Wei, T., Yi, C.W., Axnanda, S., Goodman, D.W.: Preparation and characterization of silica supported Au-Pd model catalysts. J. Phys. Chem. B 109, 23517 (2005)Google Scholar
  145. 145.
    Gustafson, J., Haire, A.R., Baddeley, C.: Depth-profiling the composition of bimetallic nanoparticles using medium energy ion scattering. Surf. Sci. 605, 220 (2011)Google Scholar
  146. 146.
    Haire, A.R., Gustafson, J., Trant, A.G., Jones, T.E., Noakes, T.C.Q., Bailey, P., Baddeley, C.J.: Influence of preparation conditions on the depth-dependent composition of AuPd nanoparticles grown on planar oxide surfaces. Surf. Sci. 605, 214 (2011)Google Scholar
  147. 147.
    Bradeley, J.S., Hill, E.W., Chaudret, B., Duteil, A.: Surface chemistry on colloidal metals. Reversible adsorbate-induced surface composition changes in colloidal palladium-copper alloys. Langmuir 11, 693 (1995)Google Scholar
  148. 148.
    Gao, F., Wang, Y., Goodman, D.W.: Reaction kinetics and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) investigation of CO oxidation over supported Pd-Au alloy catalysts. J. Phys. Chem. C 114, 4036 (2010)Google Scholar
  149. 149.
    Vitos, L., Ruban, A.V., Skriver, H.L., Kollar, J.: The surface energy of metals. Surf. Sci. 411, 186 (1998)Google Scholar
  150. 150.
    Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110 (2009)Google Scholar
  151. 151.
    Langlois, C., Alloyeau, D., Le Bouar, Y., Loiseau, A., Oikawa, T., Mottet, C., Ricolleau, C.: Growth and structural properties of CuAg and CoPt bimetallic nanoparticles. Faraday Discuss. 138, 375 (2008)Google Scholar
  152. 152.
    Goryl, M., Krok, F., Kolodziej, J.J., Piatkowski, P., Such, B., Szymonski, M.: Surface structure of Au/InSb(001) system investigated with scanning force microscopy. Vacuum 74, 223 (2004)Google Scholar
  153. 153.
    Renaud, G., Lazzari, R., Revenant, C., Barbier, A., Noblet, M., Ullrich, O., Leroy, F., Borensztein, Y., Jupille, J., Henry, C., Deville, J.P., Scheurer, F., Mane–Mane, J., Fruchart, O.: In situ GISAXS towards a real time modelling of growing nanoparticles. Science 300, 1416 (2003)Google Scholar
  154. 154.
    Benten, W., Nilius, N., Ernst, N., Freund, H.-J.: Photon emission spectroscopy of single oxide-supported Ag-Au alloy clusters. Phys. Rev. B 72, 045403 (2005)Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.CINaM-CNRSMarseille cedex 09France

Personalised recommendations