Skip to main content

Abstract

The term haptics originates from the 19th century, where it was used mainly in relation to psychophysics research. It is derived from the Greek word haptikos, which means “able to touch/grasp”. Today it is used to describe all tactile (related to skin deformation), kinesthetic (related to muscle forces) and proprioceptive (related to joint positions) sensations in the body. An important aspect to note about haptics is that it involves both a passive receptive and an active explorative component, thus, requiring bi-directional input and output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A SCARA (Selective Compliance Assembly Robot Arm) is a type of robot that is frequently used in industrial applications, it resembles the human arm in terms of kinematics, and its most frequent realization has four degrees of freedom in serial configuration.

  2. 2.

    A DC motor runs on Direct Current (DC), whereas an AC motor runs on Alternating Current (AC). Both types of motors generate torque by exploiting the interaction of magnetic and electric fields.

  3. 3.

    The word avatar is normally used in the context of full embodiment in virtual worlds.

References

  1. Abu-Tair, M., Marshall, A.: An empirical model for multi-contact point haptic network traffic. In: Proceedings of the 2nd International Conference on Immersive Telecommunications, IMMERSCOM ’09, pp. 15:1–15:6. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2009). http://dl.acm.org/citation.cfm?id=1594108.1594127

    Google Scholar 

  2. An, K.N., Askew, L.J., Chao, E.Y.: Biomechanics and functional assessment of upper extremities. In: Trends in Ergonomics/Human Factors III, pp. 573–580 (1986)

    Google Scholar 

  3. Besio, W.G., Fasiuddin, M., Patwardhan, R.: Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto, October (2005). US Patent App. 11/252,043

    Google Scholar 

  4. Bicchi, A., Raugi, M., Rizzo, R., Sgambelluri, N.: Analysis and design of an electromagnetic system for the characterization of magneto-rheological fluids for haptic interfaces. IEEE Trans. Magn. 41(5), 1876–1879 (2005). doi:10.1109/TMAG.2005.846280

    Article  Google Scholar 

  5. Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The rutgers master ii-new design force-feedback glove. IEEE/ASME Trans. Mechatron. 7(2), 256–263 (2002)

    Article  Google Scholar 

  6. Brewster, S.A., Wall, S.A., Brown, L.M., Hoggan, E.E.: Tactile displays. In: The Engineering Handbook of Smart Technology for Aging, Disability, and Independence, pp. 339–352 (2008)

    Chapter  Google Scholar 

  7. Briot, S., Arakelian, V., Guégan, S.: PAMINSA: a new family of partially decoupled parallel manipulators. Mech. Mach. Theory 44(2), 425–444 (2009)

    Article  MATH  Google Scholar 

  8. Bro-Nielsen, M.: Finite element modelling in surgery simulation. Proc. IEEE 86(3), 490–503 (1998)

    Article  Google Scholar 

  9. CAE: CAE Endoscopy VR simulator. http://www.cae.com/en/healthcare/endoscopy.asp. CAE Healtcare Inc. (2010)

  10. Caldwell, D.G., Lawther, S., Wardle, A.: Multi-modal cutaneous tactile feedback. In: Intelligent Robots and Systems, Proceedings of the 1996 IEEE/RSJ International Conference on, pp. 465–472 (1996)

    Google Scholar 

  11. Chouvardas, V.G., Miliou, A.N., Hatalis, M.K.: Tactile displays: a short overview and recent developments. In: ICTA ’05: Proceedings of Fifth International Conference on Technology and Automation, pp. 246–251 (2005)

    Google Scholar 

  12. Clavel, R.: Device for displacing and positioning an element in space. WIPO Patent, WO 87/03528 (1987)

    Google Scholar 

  13. Coles, T., John, N.W., Gould, D.A., Caldwell, D.G.: Haptic palpation for the femoral pulse in virtual interventional radiology. In: Advances in Computer-Human Interactions, 2009. ACHI ’09. Second International Conferences on, pp. 193–198 (2009). doi:10.1109/ACHI.2009.61

    Chapter  Google Scholar 

  14. Coles, T.R., Meglan, D., John, N.W.: The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans. Haptics 4(1), 51–66 (2011). doi:10.1109/TOH.2010.19

    Article  Google Scholar 

  15. Colgate, E., Hogan, N.: An analysis of contact instability in terms of passive physical equivalents. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Scottsdale, AZ, USA, pp. 404–409 (1989)

    Google Scholar 

  16. Colgate, J.E.: The control of dynamically interacting systems. PhD thesis, MIT Department of Mechanical Engineering (1988)

    Google Scholar 

  17. Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: application to haptic interfaces. J. Robot. Syst. 14(1), 37–47 (1997)

    Article  Google Scholar 

  18. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing: from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  19. Deetjen, P., Speckmann, E.-J.: Physiologie. Urban und Schwarz, München (1994)

    Google Scholar 

  20. Deetjen, P., Speckmann, E.J., Hescheler, J.: Physiologie, 4th edn. Elsevier, Urban und Fischer Verlag, München (2005)

    Google Scholar 

  21. Delingette, H.: Toward realistic soft-tissue modeling in medical simulation. Proc. IEEE 86(3), 512–523 (1998)

    Article  Google Scholar 

  22. Deutsch, J.E., Lewis, J.A., Burdea, G.: Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 30–35 (2007). doi:10.1109/TNSRE.2007.891384

    Article  Google Scholar 

  23. Dollar, A.M., Herr, H.: Active orthoses for the lower-limbs: challenges and state of the art. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 968–977 (2007). doi:10.1109/ICORR.2007.4428541

    Google Scholar 

  24. Durlach, N.I., Mavor, A.S.: Virtual Reality: Scientific and Technological Challenges. National Academies Press, Washington (1995)

    Google Scholar 

  25. Dworkin, P., Zeltzer, D.: A new model for efficient dynamic simulation. In: Proceedings of the Eurographics Workshop on Animation and Simulation, pp. 135–147 (1993)

    Google Scholar 

  26. Emery, C., Samur, E., Lambercy, O., Bleuler, H., Gassert, R.: Haptic/vr clinical assessment tool for fine motor control. In: Proceeding Eurohaptics 2010, pp. 186–193 (2010)

    Google Scholar 

  27. Esen, H., Sachsenhauser, A., Yano, K., Buss, M.: A multi-user virtual training system concept and objective assessment of trainings. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1084–1089 (2007). doi:10.1109/ROMAN.2007.4415242

    Google Scholar 

  28. Faller, S., Schünke, M.: Der Körper des Menschen. Einführung in Bau und Funktion, 14th edn. Georg Thieme Verlag, Stuttgart (2004)

    Google Scholar 

  29. Famaey, N., Vander Sloten, J.: Soft tissue modelling for applications in virtual surgery and surgical robotics. Comput. Methods Biomech. Biomed. Eng. 11(4), 351–366 (2008)

    Article  Google Scholar 

  30. Fluet, M.-C., Lambercy, O., Gassert, R.: Upper limb assessment using a virtual peg insertion test. In: Proceeding: IEEE International Conference on Rehabilitation Robotics (ICORR) (2011)

    Google Scholar 

  31. Fritschi, M., Ernst, M.O., Buss, M.: Integration of kinesthetic and tactile display—a modular design concept. In: Proceedings of the EuroHaptics 2006 (2006)

    Google Scholar 

  32. Goldstein, E.B.: Wahrnehmungspsychologie: Der Grundkurs, 7th edn. Springer, Berlin (2008)

    Google Scholar 

  33. Gough, V.E.: Contribution to discussion of papers on research in automobile stability, control and tyre performance. Proc. Inst. Mech. Eng., Auto Div. 171, 392–395 (1956–1957)

    Google Scholar 

  34. Hesse, S., Schmidt, H., Werner, C., Bardeleben, A.: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 16(6), 705–710 (2003)

    Article  Google Scholar 

  35. Heuser, A., Kourtev, H., Winter, S., Fensterheim, D., Burdea, G., Hentz, V., Forducey, P.: Telerehabilitation using the rutgers master ii glove following carpal tunnel release surgery: proof-of-concept. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 43–49 (2007). doi:10.1109/TNSRE.2007.891393

    Article  Google Scholar 

  36. Hogan, N.: Impedance control: An approach to manipulation. Part I—Theory, Part II—Implementation, Part III—Applications. ASME J. Dyn. Syst. Meas. Control 107, 1–24 (1985)

    Article  MATH  Google Scholar 

  37. Howe, R.D., Peine, W.J., Kantarinis, D.A., Son, J.S.: Remote palpation technology. IEEE Eng. Med. Biol. Mag. 14(3), 318–323 (1995). doi:10.1109/51.391770

    Article  Google Scholar 

  38. Hubens, G., Coveliers, H., Balliu, L., Ruppert, M., Vaneerdeweg, W.: A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system. Surg. Endosc. 17(10), 1595–1599 (2003)

    Article  Google Scholar 

  39. Hwang, S.L., Barfield, W., Chang, T.C., Salvendy, G.: Integration of humans and computers in the operation and control of flexible manufacturing systems. Int. J. Prod. Res. 22(5), 841–856 (1984)

    Article  Google Scholar 

  40. Inoue, H., Tsusaka, Y., Fukuizumi, T.: Parallel manipulator. In: Proc 3rd ISRR, Gouvieux, France (1985)

    Google Scholar 

  41. Iwata, H., Yano, H., Nakaizumi, F., Kawamura, R.: Project feelex: adding haptic surface to graphics. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 469–476. ACM, New York (2001)

    Google Scholar 

  42. Jack, D., Boian, R., Merians, A.S., Tremaine, M., Burdea, G.C., Adamovich, S.V., Recce, M., Poizner, H.: Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 308–318 (2001). doi:10.1109/7333.948460

    Article  Google Scholar 

  43. Jandura, L., Srinivasan, M.A.: Experiments on human performance in torque discrimination and control. Dyn. Syst. Control 1, 369 (1994)

    Google Scholar 

  44. Johnson, D.E., Willemsen, P., Cohen, E.: Six degree-of-freedom haptic rendering using spatialized normal cone search. IEEE Trans. Vis. Comput. Graph. 11(6), 661–670 (2005). doi:10.1109/TVCG.2005.106

    Article  Google Scholar 

  45. Kajimoto, H., Kawakami, N., Tachi, S., Inami, M.: SmartTouch: electric skin to touch the untouchable. IEEE Comput. Graph. Appl. 24(1), 36–43 (2004)

    Article  Google Scholar 

  46. Kong, X., Gosselin, C.: Type synthesis of parallel mechanisms. In: Springer Tracts in Advanced Robotics, vol. 33. Springer, Berlin (2007)

    Google Scholar 

  47. Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995)

    Google Scholar 

  48. Koo, I.M., Jung, K., Koo, J.C., Nam, J.-D., Lee, Y.K., Choi, H.R.: Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24(3), 549–558 (2008)

    Article  Google Scholar 

  49. Kühnapfel, U., Kuhn, C., Hubner, M., Krumm, H.G., Maass, H., Neisius, B.: The Karlsruhe endoscopic surgery trainer as an example for virtual reality in medical education. Minim. Invasive Ther. Allied Technol. 6(2), 122–125 (1997)

    Article  Google Scholar 

  50. Lederman, S.J., Klatzky, R.L.: Hand movement: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987)

    Article  Google Scholar 

  51. Lim, I., Van Wegen, E., De Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., Jones, D., Rochester, L., Kwakkel, G.: Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin. Rehabil. 19(7), 695 (2005)

    Article  Google Scholar 

  52. Liu, Y., Davidson, R., Taylor, P.: Touch sensitive electrorheological fluid based tactile display. Smart Mater. Struct. 14, 1563–1568 (2005)

    Article  Google Scholar 

  53. Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77(3), 183–197 (2005). doi:10.1016/j.cmpb.2004.11.002

    Article  Google Scholar 

  54. Merians, A.S., Fluet, G.G., Qiu, Q., Saleh, S., Lafond, I., Davidow, A., Adamovich, S.V.: Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J. NeuroEng. Rehabil. 8(1), 1–10 (2011). doi:10.1186/1743-0003-8-27

    Article  Google Scholar 

  55. Merlet, J.-P., Gosselin, C.: In: Siciliano, B., Khatib, O. (eds.) Springer Handbook on Robotics, pp. 269–285. Springer, Berlin (2008)

    Chapter  Google Scholar 

  56. Merrett, G.V., Metcalf, C.D., Zheng, D., Cunningham, S., Barrow, S., Demain, S.H.: Design and qualitative evaluation of tactile devices for stroke rehabilitation. In: IET Assisted Living (2011)

    Google Scholar 

  57. Miyazaki, S., Ueno, J., Yasuda, T., Yokoi, S., Torikawi, J.: A study of virtual manipulation of elastic objects with destruction. In: Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 26–31 (1996)

    Google Scholar 

  58. Moore, P., Molloy, D.: A survey of computer-based deformable models. In: Machine Vision and Image Processing Conference, 2007. IMVIP 2007. International, pp. 55–66 (2007). doi:10.1109/IMVIP.2007.31

    Google Scholar 

  59. Morgenbesser, H.B., Srinivasan, M.A.: Force shading for haptic shape perception. ASME Proc. Dyn. Syst. Control Div. 58, 407–412 (1996)

    Google Scholar 

  60. Morioka, M., Whitehouse, D.J., Griffin, M.J.: Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel. Somatosens. Motor Res. 25(2), 101–112 (2008)

    Article  Google Scholar 

  61. Moy, G., Wagner, C., Fearing, R.S.: A compliant tactile display for teletaction. In: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 4, pp. 3409–3415. IEEE, New York (2000)

    Google Scholar 

  62. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. In: Computer Graphics Forum. Wiley Online Library, vol. 25, pp. 809–836 (2006)

    Google Scholar 

  63. Nikitczuk, J., Weinberg, B., Mavroidis, C.: Rehabilitative knee orthosis driven by electro-rheological fluid based actuators. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp. 2283–2289 (2005). doi:10.1109/ROBOT.2005.1570453

    Chapter  Google Scholar 

  64. Piegl, L.A., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  65. Riener, R., Quintern, J., Schmidt, G.: Biomechanical model of the human knee evaluated by neuromuscular stimulation. J. Biomech. 29(9), 1157–1167 (1996)

    Article  Google Scholar 

  66. Rizzo, R., Sgambelluri, N., Scilingo, E.P., Raugi, M., Bicchi, A.: Electromagnetic modeling and design of haptic interface prototypes based on magnetorheological fluids. IEEE Trans. Magn. 43(9), 3586–3600 (2007). doi:10.1109/TMAG.2007.901351

    Article  Google Scholar 

  67. Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environments. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 345–352. ACM Press/Addison-Wesley Publishing Co., New York (1997). doi:10.1145/258734.258878

    Chapter  Google Scholar 

  68. Salisbury, K., Tarr, C.: Haptic rendering of surfaces defined by implicit functions. In: Proceedings of the ASME 6th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator System, pp. 61–68 (1997)

    Google Scholar 

  69. Schmidt, R.F., Thews, G.: Die Physiologie des Menschen. Springer, Berlin (1990)

    Google Scholar 

  70. Schostek, S., Schurr, M.O., Buess, G.F.: Review on aspects of artificial tactile feedback in laparoscopic surgery. Med. Eng. Phys. 31(8), 887–898 (2009)

    Article  Google Scholar 

  71. Sgambelluri, N., Scilingo, E.P., Bicchi, A., Rizzo, R., Raugi, M.: Advanced modeling and preliminary psychophysical experiments for a free-hand haptic device. In: Proc. IEEE/RSJ Int. Conf. on Robots and Intelligent Systems—IROS06, pp. 1558–1563 (2006)

    Google Scholar 

  72. Shinohara, M., Shimizu, Y., Mochizuki, A.: Three-dimensional tactile display for the blind. IEEE Trans. Rehabil. Eng. 6(3), 249–256 (1998). doi:10.1109/86.712218

    Article  Google Scholar 

  73. Siciliano, O., Khatib, B. (eds.): Handbook of Robotics. Springer, Berlin (2008)

    MATH  Google Scholar 

  74. Sledd, A.: Performance enhancement of a haptic arm exoskeleton. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pp. 375–381 (2006)

    Chapter  Google Scholar 

  75. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–385 (1965–66)

    Article  Google Scholar 

  76. Sung, G.T., Gill, I.S.: Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems. Urology 58(6), 893–898 (2001)

    Article  Google Scholar 

  77. Sutter, P.H., Iatridis, J.C., Thakor, N.V.: Response to Reflected-Force Feedback to Fingers in Teleoperations. In: Proceedings of the NASA Conference on Space Telerobotics (1989)

    Google Scholar 

  78. Tan, H.Z., Pang, X.D., Durlach, N.I.: Manual resolution of length, force, and compliance. Adv. Robot. 42, 13–18 (1992)

    Google Scholar 

  79. Tan, H.Z., Srinivasan, M.A., Eberman, B., Cheng, B.: Human factors for the design of force-reflecting haptic interfaces. Dyn. Syst. Control 55(1), 353–359 (1994)

    Google Scholar 

  80. Thompson, T.V. II, Cohen, E.: Direct haptic rendering of complex trimmed NURBS models. In: Proceeding ACM SIGGRAPH 2005 Courses, pp. 89–96 (2005). doi:10.1145/1198555.1198609

    Chapter  Google Scholar 

  81. Thompson, T.V. II, Johnson, D.E., Cohen, E.: Direct haptic rendering of sculptured models. In: Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp. 167–176 (1997). doi:10.1145/253284.253336

    Chapter  Google Scholar 

  82. Ueberle, M., Mock, N., Buss, M.: Design, control, and evaluation of a hyper-redundant haptic device. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds.) Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 25–44. Springer, Berlin (2007). http://dx.doi.org/10.1007/978-3-540-71364-7_3

    Chapter  Google Scholar 

  83. Van der Linde, R.Q., Lammertse, P., Frederiksen, E., Ruiter, B.: The HapticMaster, a new high-performance haptic interface (2002)

    Google Scholar 

  84. van Eijden, T.M., Weijs, W.A., Kouwenhoven, E., Verburg, J.: Forces acting on the patella during maximal voluntary contraction of the quadriceps femoris muscle at different knee flexion/extension angles. Acta Anat. 129(4), 310–314 (1987)

    Article  Google Scholar 

  85. Vischer, P., Clavel, R.: Kinematic calibration of the parallel delta robot. Robotica 16(02), 207–218 (1998)

    Article  Google Scholar 

  86. Wang, Q., Hayward, V.: Tactile synthesis and perceptual inverse problems seen from the viewpoint of contact mechanics. ACM Trans. Appl. Percept. 5(2), 7 (2008)

    Article  Google Scholar 

  87. Wang, Q., Hayward, V.: Biomechanically optimized distributed tactile transducer based on lateral skin deformation. Int. J. Robot. Res. 29(4), 323–335 (2009)

    Article  Google Scholar 

  88. Weinstein, S.: Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo, D.R. (ed.) The Skin Senses, Springfield, IL, pp. 195–218 (1968)

    Google Scholar 

  89. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, New York (1990)

    Google Scholar 

  90. Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: Intelligent Robots and Systems ‘Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 3. Chicago, IL, USA, pp. 146–151 (1995)

    Chapter  Google Scholar 

  91. Zimmermann, M.: Mechanoreceptors of the glaborous skin and tactile acuity. In: Studies in Neurophysiology Presented to A.K., p. 267. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  92. Zotterman, Y.: Sensory Functions of the Skin in Primates. Pergamon, Oxford (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Riener .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Riener, R., Harders, M. (2012). Haptic Aspects. In: Virtual Reality in Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4011-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4011-5_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4010-8

  • Online ISBN: 978-1-4471-4011-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics