Visual Aspects


Computer graphics deals with artificially creating and manipulating image content. Commonly the term refers to three-dimensional scene representations in real-time, however, also the offline generation of single, high-quality images belongs to this area. Both directions involve scene rendering, i.e. the generation of artificial images based on a computational model. In this context it is useful to distinguish between interactive real-time and offline rendering. The former is used in virtual reality, and more commonly in computer games, while the latter is typically applied, for instance, in the movie industry or in digital architecture. Depending on the application area, different approaches for generating artificial images are followed, which will be discussed in more detail below.


Virtual Reality Computer Graphic Virtual World Motion Parallax Pinhole Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agrawala, M., Beers, A., McDowall, I., Fröhlich, B., Bolas, M., Hanrahan, P.: The two-user responsive workbench: support for collaboration through individual views of a shared space. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 327–332 (1997) Google Scholar
  2. 2.
    Anttila, T.: A haptic rendering system for virtual handheld electronic products. Technical Report 347, Technical Research Centre of Finland, Espoo (1998). ISBN 951-38-5232-6; 951-38-5233-4 Google Scholar
  3. 3.
    Appel, A.: Some techniques for shading machine renderings of solids. In: Proceedings of the Spring Joint Computer Conference. AFIPS ’68, pp. 37–45 (1968) Google Scholar
  4. 4.
    Blinn, J.: Models of light reflection for computer synthesized pictures. In: Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques, vol. 11, pp. 192–198 (1977) Google Scholar
  5. 5.
    Blinn, J.: Simulation of wrinkled surfaces. In: Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, vol. 12, pp. 286–292 (1978) Google Scholar
  6. 6.
    Bowmaker, J.K., Dartnall, H.J.A.: Visual pigments of rods and cones in a human retina. J. Physiol. 298, 501–511 (1980) Google Scholar
  7. 7.
    Buxton, W., Fitzmaurice, G.: Hmd’s, caves and chameleon: a human-centric analysis of interaction in virtual space. Comput. Graph. 32(4), 64–68 (1998) CrossRefGoogle Scholar
  8. 8.
    Cruz-Neira, C., Sandin, D., DeFanti, T., Kenyon, R., Hart, J.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35, 64–72 (1992) CrossRefGoogle Scholar
  9. 9.
    de Boor, C.: A Practical Guide to Splines. Springer, New York (1978) MATHCrossRefGoogle Scholar
  10. 10.
    Duh, H., Lin, J., Kenyon, R., Parker, D., Furness, T.: Effects of characteristics of image quality in an immersive environment. Presence 11(3), 324–332 (2002) CrossRefGoogle Scholar
  11. 11.
    Euler, L.: Formulae generales pro translatione quacunque corporum rigidorum. Novi Comment. Acad. Sci. Petropolitanae 20, 189–207 (1776) Google Scholar
  12. 12.
    Goral, C., Torrance, K., Greenberg, D., Battaile, B.: Modeling the interaction of light between diffuse surfaces. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, vol. 18, pp. 213–222 (1984) Google Scholar
  13. 13.
    Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6), 623–629 (1971) MATHCrossRefGoogle Scholar
  14. 14.
    Hand, C.: A survey of 3D interaction techniques. Comput. Graph. Forum 16(5), 269–281 (1997) CrossRefGoogle Scholar
  15. 15.
    Kaufman, A., Mueller, K.: Overview of volume rendering. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, pp. 127–174. Academic Press, New York (2005) CrossRefGoogle Scholar
  16. 16.
    Kircher, A.: Ars magna lucis et umbrae, vol. 10. Rome, Italy (1646) Google Scholar
  17. 17.
    Krueger, W., Froehlich, B.: The responsive workbench. IEEE Comput. Graph. Appl. 14(3), 12–15 (1994) CrossRefGoogle Scholar
  18. 18.
    Möbius, A.: Der Barycentrische Calcul – Ein Neues Hülfsmittel zur Analytischen Behandlung der Geometrie. Verlag von J.A. Barth, Leipzig (1827) Google Scholar
  19. 19.
    Nicodemus, F.: Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4(7), 767–775 (1965) CrossRefGoogle Scholar
  20. 20.
    Osterberg, G.: Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. 6, 1–103 (1935) Google Scholar
  21. 21.
    Phong, B.-T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975) CrossRefGoogle Scholar
  22. 22.
    Randi, J., Licea-Kane, B., Ginsburg, D., Kessenich, J., Lichtenbelt, B., Malan, H., Weiblen, M.: OpenGL Shading Language, 3rd edn. Addison-Wesley, Reading (2009) Google Scholar
  23. 23.
    Regan, E., Price, K.: The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviat. Space Environ. Med. 65(6), 527–530 (1994) Google Scholar
  24. 24.
    Shoemake, K.: Animating rotation with quaternion curves. Comput. Graph. 19(3), 245–254 (1985) CrossRefGoogle Scholar
  25. 25.
    Shreiner, D.: OpenGL Programming Guide: The Official Guide to Learning OpenGL. Addison-Wesley, Reading (2009) Google Scholar
  26. 26.
    Slater, M., Usoh, M.: Body centred interaction in immersive virtual environments. In: Artificial Life and Virtual Reality, pp. 125–148 (1994) Google Scholar
  27. 27.
    Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2(3), 201–219 (1995) CrossRefGoogle Scholar
  28. 28.
    Smith, T., Guild, J.: The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33(3), 73–134 (1931) CrossRefGoogle Scholar
  29. 29.
    Souman, J., Robuffo, P., Schwaiger, M., Frissen, I., Thümmel, T., Ulbrich, H., Di Luca, A., Bülthoff, H., Ernst, M.: Cyberwalk: enabling unconstrained omnidirectional walking through virtual environments. Trans. Appl. Percept. (2011) Google Scholar
  30. 30.
    Sutherland, I.E.: A head-mounted three dimensional display. In: Proceedings of the December 9–11, 1968, Fall Joint Computer Conference, Part I, AFIPS ’68, pp. 757–764. ACM, New York (1968). doi: 10.1145/1476589.1476686 CrossRefGoogle Scholar
  31. 31.
    Templeman, J., Denbrook, P., Sibert, L.: Virtual locomotion: walking in place through virtual environments. Presence 8, 598–617 (1999) CrossRefGoogle Scholar
  32. 32.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21, pp. 205–214 (1987) Google Scholar
  33. 33.
    Wald, I., Mark, W., Günther, J., Boulos, S., Ize, T., Hunt, W., Parker, S., Shírley, P.: State of the art in ray tracing animated scenes. Comput. Graph. 6(28), 1691–1722 (2009) Google Scholar
  34. 34.
    Wallace, J., Cohen, M., Greenberg, D.: A two-pass solution to the rendering equation: a synthesis of ray tracing and radiosity methods. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21, pp. 311–320 (1987) Google Scholar
  35. 35.
    Walls, G.: The filling-in process. Am. J. Optom. Arch. Am. Acad. Optom. 31(7), 329–341 (1954) CrossRefGoogle Scholar
  36. 36.
    Ware, C., Arthur, K., Booth, K.: Fish tank virtual reality. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems, pp. 37–42 (1993) CrossRefGoogle Scholar
  37. 37.
    Whitted, T.: An improved illumination model for shaded display. Commun. ACM 23(6), 343–349 (1980) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Sensory-Motor Systems Lab ETH ZurichUniversity Hospital BalgristZürichSwitzerland
  2. 2.Computer Vision LabETH ZurichZürichSwitzerland

Personalised recommendations