Skip to main content

Medical Model Generation

  • Chapter
Virtual Reality in Medicine
  • 3513 Accesses

Abstract

Model generation in VR-based applications is a necessary step in providing a simulated environment to the user. This process is in general a difficult task. The increase of computational power enabled the display of larger virtual environments, thus, reinforcing the need for improved methods for model acquisition, enhancement, optimization, and adaptation. The objects in a VR scene can usually be categorized into either man-made or natural entities. Two general strategies are followed to create these objects—artificial generation or real-world based acquisition. The former technique focuses on manual or semi-automatic design of virtual environments using computer-based modeling tools. In addition, some simple, exactly defined structures can be generated completely automatically following pre-defined procedural formalisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloch, F.: Nuclear induction. Phys. Rev. 70(7–8), 460–474 (1946)

    Article  Google Scholar 

  2. Boesiger, P.: Kernspin-Tomographie Für die Medizinische Diagnostik. Teubner, Leipzig (1985)

    Google Scholar 

  3. Brooks, F.P.: What’s real about virtual reality? IEEE Comput. Graph. Appl. 19(6), 16–27 (1999)

    Article  MathSciNet  Google Scholar 

  4. Brown, J.D., Rosen, J., Kim, Y.S., Chang, L., Sinanan, M., Hannaford, B.: In-vivo and in-situ compressive properties of porcine abdominal soft tissues. In: Westwood, J.D., et al. (eds.) Medicine Meets Virtual Reality, vol. 11, pp. 26–32 (2003)

    Google Scholar 

  5. Bryan, N.R. (ed.): Introduction to the Science of Medical Imaging. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  6. Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A.: Measurement and modelling of the compliance of human and porcine organs. Med. Image Anal. 5(4), 231–236 (2001)

    Article  Google Scholar 

  7. Catmull, E.E.: A subdivision algorithm for computer display of curved surfaces. PhD thesis, Department of Computer Science, Univ. of Utah (1974)

    Google Scholar 

  8. Caunce, A., Taylor, C.J.: 3D point distribution models of the cortical sulci. In: Proceeding of Sixth International Conference on Computer Vision, pp. 402–407 (1998)

    Google Scholar 

  9. Chan, S.L., Purisima, E.O.: A new tetrahedral tesselation scheme for isosurface generation. Comput. Graph. 22(1), 83–90 (1998)

    Article  Google Scholar 

  10. Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Comput. Graph. 22, 37–54 (1997)

    Article  Google Scholar 

  11. Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Commun. ACM 19(10), 547–554 (1976)

    Article  MATH  Google Scholar 

  12. Cootes, T.F., Taylor, C.J.: Active shape models—smart snakes. In: Proc. British Machine Vision Conf., pp. 266–275 (1992)

    Google Scholar 

  13. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications. I. J. Appl. Phys. 34(9), 2722–2727 (1963)

    Article  MATH  Google Scholar 

  14. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications. II. J. Appl. Phys. 35(10), 2908–2913 (1964)

    Article  MATH  Google Scholar 

  15. Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171(3976), 1151–1153 (1971)

    Article  Google Scholar 

  16. Davies, P.J., Carter, F.J., Cuschieri, A.: Mathematical modelling for keyhole surgery simulations: a biomechanical model for spleen tissue. J. Appl. Math. 67(1), 41–67 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346 (2001)

    Google Scholar 

  18. Efros, A.A., Leung, T.: Texture synthesis by non-parametric sampling. In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2, pp. 1033–1038 (1999)

    Chapter  Google Scholar 

  19. El-Baz, A.S., Acharya, U.R., Laine, A.F., Suri, J.S. (eds.): Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, vol. 2. Springer, Berlin (2011)

    Google Scholar 

  20. Erikson, C., Manocha, D., Baxter III, W.V.: HLODs for faster display of large static and dynamic environments. In: 2001 ACM Symposium on Interactive 3D Graphics, pp. 111–120 (2001)

    Chapter  Google Scholar 

  21. Erikson, K.R., Fry, F.J., Jones, J.P.: Ultrasound in medicine-a review. IEEE Trans. Sonics Ultrason. 21(3), 144–170 (1974)

    Article  Google Scholar 

  22. Fang, S., Chen, H.: Hardware accelerated voxelization. Comput. Graph. 24(3), 433–442 (2000)

    Article  Google Scholar 

  23. Farshad, M., Barbezat, M., Flüeler, P., Schmidlin, F., Graber, P., Niederer, P.: Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. J. Biomech. 32(4), 417–425 (1999)

    Article  Google Scholar 

  24. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Floater, M.S., Sabin, M.A. (eds.) In Advances in Multiresolution for Geometric Modelling, pp. 259–284. Springer, Berlin (2004)

    Google Scholar 

  25. Fowlkes, J.B., Emelianov, S.Y., Pipe, J.G., Skovoroda, A.R., Adler, R.S., Carson, P.L., Sarvazyan, A.P.: Magnetic resonance imaging techniques for detection of elasticity variation. Med. Phys. 22(11), 1771–1778 (1995)

    Article  Google Scholar 

  26. Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.: Yet another survey on image segmentation: region and boundary information integration. In: ECCV, pp. 408–422 (2002)

    Google Scholar 

  27. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (1993)

    Google Scholar 

  28. Gagalowicz, A., Ma, S.D.: Sequential synthesis of natural textures. Comput. Vis. Graph. Image Process. 30(3), 289–315 (1985)

    Article  Google Scholar 

  29. Gardner, G.Y.: Simulation of natural scenes using textured quadric surfaces. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 11–20 (1984)

    Google Scholar 

  30. Gardner, M.: The fantastic combinations of John Conways’s new solitaire game of life. Sci. Am. 223(4), 120–123 (1970)

    Article  Google Scholar 

  31. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 206–216 (1997)

    Google Scholar 

  32. Gauss, C.F.: Disquisitiones generales circa superficies curva (1828)

    Google Scholar 

  33. Harders, M.: Surgical Scene Generation for Virtual Reality-based Training in Medicine. Springer, Berlin (2008)

    Book  Google Scholar 

  34. Harders, M., Bachofen, D., Bajka, M., Grassi, M., Heidelberger, B., Sierra, R., Spaelter, U., Steinemann, D., Teschner, M., Tuchschmid, S., Zatonyi, J., Székely, G.: Virtual reality based simulation of hysteroscopic interventions. Presence 17(5), 441–462 (2008)

    Article  Google Scholar 

  35. Heckbert, P.S.: Survey of texture mapping. IEEE Comput. Graph. Appl. 6(11), 56–67 (1986)

    Article  Google Scholar 

  36. Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  37. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’93, pp. 19–26 (1993)

    Chapter  Google Scholar 

  38. Hounsfield, G.N.: Computerised transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol. 46, 1016–1022 (1973)

    Article  Google Scholar 

  39. Hsieh, J.: Computed Tomography: Principles, Design, Artifacts, and Recent Advances, vol. PM114. SPIE Press, Bellingham (2003)

    Google Scholar 

  40. Hug, C., Brechbühler, J., Székely, G.: Model-based initialisation for segmentation. In: Proceedings 6’th European Conference on Computer Vision—ECCV 2000, Part II, pp. 290–306 (2000)

    Chapter  Google Scholar 

  41. Hug, J.: Semi-automatic segmentation of medical imagery. PhD thesis, ETH Zurich (2001)

    Google Scholar 

  42. Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (2002)

    MATH  Google Scholar 

  43. Kalberer, G.A., Van Gool, L.: Realistic face animation for speech. J. Vis. Comput. Animat. 13(2), 97–106 (2002)

    Article  MATH  Google Scholar 

  44. Kansal, A.R., Torquato, S., Harsh, G.R., Chiocca, E.A., Deisboeck, T.S.: Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 203(4), 367–382 (2000)

    Article  Google Scholar 

  45. Karabassi, E.-A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. J. Graph. Tools 4, 5–10 (1999)

    Article  Google Scholar 

  46. Kauer, M.: Inverse finite element characterization of soft tissues with aspiration experiments. PhD thesis, ETH Zurich (2001)

    Google Scholar 

  47. Kauer, M., Vuskovic, V., Dual, J., Szekely, G., Bajka, M.: Inverse finite element characterization of soft tissues. Med. Image Anal. 6(3), 275–287 (2002)

    Article  Google Scholar 

  48. Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans. Med. Imaging 18(10), 828–839 (1999)

    Article  Google Scholar 

  49. Kerdok, A.E., Ottensmeyer, M.P., Howe, R.D.: Effects of perfusion on the viscoelastic characteristics of liver. J. Biomech. 39(12), 2221–2231 (2006)

    Article  Google Scholar 

  50. Kim, J., Tay, B.K., Stylopoulos, N., Rattner, D.W., Srinivasan, M.A.: Characterization of intra-abdominal tissues from in vivo animal experiments for surgical simulation. In: Medical Image Computing and Computer-assisted Intervention, pp. 206–213 (2003)

    Google Scholar 

  51. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.-P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 105–114 (1998)

    Google Scholar 

  52. Kotcheff, A.C.W., Taylor, C.J.: Automatic construction of eigenshape models by direct optimization. Med. Image Anal. 2(4), 303–314 (1998)

    Article  Google Scholar 

  53. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)

    Article  Google Scholar 

  54. Lindenmayer, A.: Mathematical models for cellular interaction in development: Parts I and II. J. Theor. Biol. 18(3), 300–315 (1968)

    Article  Google Scholar 

  55. Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: Proceedings of the Conference on Visualization ’98, VIS ’98, pp. 279–286 (1998)

    Google Scholar 

  56. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21, pp. 163–169 (1987)

    Google Scholar 

  57. Mansfield, P.: Multi-planar image formation using NMR spin echoes. J. Phys. C, Solid State Phys. 10(3), 55–58 (1977)

    Article  Google Scholar 

  58. Mayles, P., Nahum, A., Rosenwald, J.C.: Handbook of Radiotherapy Physics: Theory and Practice. Taylor and Francis, London (2007)

    Book  Google Scholar 

  59. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996)

    Article  Google Scholar 

  60. Mueller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of buildings. ACM SIGGRAPH 2006 Pap. 25(3), 614–623 (2006)

    Article  Google Scholar 

  61. Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232), 1854–1857 (1995)

    Article  Google Scholar 

  62. Nadernejad, E., Sharifzadeh, S., Hassanpour, H.: Edge detection techniques: evaluations and comparisons. Appl. Math. Sci. 2(31), 1507–1520 (2008)

    MathSciNet  MATH  Google Scholar 

  63. Nava, A., Mazza, E., Kleinermann, F., Avis, N.J., McClure, J.: Evaluation of the mechanical properties of human liver and kidney through aspiration experiments. Technol. Health Care 12(3), 269–280 (2004)

    Google Scholar 

  64. Newman, T.S., Yia, H.: A survey of the marching cubes algorithm. Comput. Graph. 30(5), 854–879 (2006)

    Article  Google Scholar 

  65. Nielson, G.M., Hamann, B.: The asymptotic decider: resolving the ambiguity in marching cubes. In: Proceedings of the 2nd Conference on Visualization ’91, pp. 83–91 (1991)

    Chapter  Google Scholar 

  66. Oliensis, J.: Local reproducible smoothing without shrinkage. IEEE Trans. Pattern Anal. Mach. Intell. 15(3), 307–312 (1993)

    Article  Google Scholar 

  67. Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: a method for imaging the elasticity of biological tissues. Ultrason. Imaging 13(2), 111–134 (1991)

    Google Scholar 

  68. Ottensmeyer, M.P.: In vivo measurement of solid organ visco-elastic properties. In: Medicine Meets Virtual Reality, vol. 85, pp. 328–333 (2002)

    Google Scholar 

  69. Ottensmeyer, M.P., Kerdok, A.E., Howe, R.D., Dawson, S.: The effects of testing environment on the viscoelastic properties of soft tissues. In: Medical Simulation, vol. 3078, pp. 9–18 (2004)

    Chapter  Google Scholar 

  70. Paget, R., Harders, M., Szekely, G.: A framework for coherent texturing in surgical simulators. In: Proceedings of the 13th Pacific Conference on Computer Graphics and Applications, pp. 112–114 (2005)

    Google Scholar 

  71. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  72. Peachey, D.R.: Solid texturing of complex surfaces. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286 (1985)

    Google Scholar 

  73. Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 287–296 (1985)

    Google Scholar 

  74. Pham, D.L., Xu, C., Price, J.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–338 (2000)

    Article  Google Scholar 

  75. Prusinkiewicz, P., Hanan, J., Mech, R.: An l-system-based plant modeling language. In: Proceedings of the International Workshop on Applications of Graph Transformations with Industrial Relevance, AGTIVE ’99, pp. 395–410 (2000)

    Chapter  Google Scholar 

  76. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  77. Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69(1–2), 37–38 (1946)

    Article  Google Scholar 

  78. Qi, A.S., Zheng, X., Du, C.Y., An, B.S.: A cellular automaton model of cancerous growth. J. Theor. Biol. 161(1), 1–12 (1993)

    Article  Google Scholar 

  79. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Rep. Proc. Sax. Acad. Sci. 69, 262–277 (1917)

    Google Scholar 

  80. Reddy, M.: SCROOGE: Perceptually-driven polygon reduction. Comput. Graph. 15(4), 191–203 (1996)

    Google Scholar 

  81. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inform. 41, 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  82. Röntgen, W.C.: Über Eine Neue Art Von Strahlen. Sitzungsberichte der Würzburger Physik.-medic. Gesellschaft (1895)

    Google Scholar 

  83. Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41(2), 233–260 (1988)

    Article  Google Scholar 

  84. Schreiner, W., Buxbaum, P.F.: Computer optimization of vascular trees. IEEE Trans. Biomed. Eng. 40(5), 482–491 (1993)

    Article  Google Scholar 

  85. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. Comput. Graph. 26, 65–70 (1992)

    Article  Google Scholar 

  86. Sheffer, A., Hart, J.C.: Seamster: inconspicuous low-distortion texture seam layout. In: Proceedings of the Conference on Visualization ’02, pp. 291–298 (2002)

    Google Scholar 

  87. Sheffer, A., Levy, B., Mogilnitsky, M., Bogomyakov, A.: ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–333 (2005)

    Article  Google Scholar 

  88. Sierra, R., Szekely, G., Bajka, M.: Generation of pathologies for surgical training simulators. In: Proceedings of Medical Image Computing and Computer-assisted Intervention, vol. 2, pp. 202–210 (2002)

    Google Scholar 

  89. Sierra, R., Zsemlye, G., Szekely, G., Bajka, M.: Generation of variable anatomical models for surgical training simulators. Med. Image Anal. 10(2), 275–285 (2006)

    Article  Google Scholar 

  90. Sinkus, R., Weiss, S., Wigger, E., Lorenzen, J., Dargatz, M., Kuhl, C.: Non-linear elastic tissue properties of the breast measured by mr-elastography—initial in-vitro and in-vivo results. In: ISMRM 10th Annual Meeting, p. 33 (2002)

    Google Scholar 

  91. Spitzer, V., Ackerman, M.J., Scherzinger, A.L., Whitlock, D.: The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3(2), 118–130 (1996)

    Article  Google Scholar 

  92. Staib, L.H., Duncan, J.S.: Boundary finding with parametrically deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1061–1075 (1992)

    Article  Google Scholar 

  93. Styner, M.A., Rajamani, K.T., Nolte, L.P., Zsemlye, G., Szekely, G., Taylor, C.J., Davies, R.H.: Evaluation of 3D correspondence methods for model building. In: Information Processing in Medical Imaging, vol. 18, pp. 63–75 (2003)

    Chapter  Google Scholar 

  94. Szczerba, D., Szekely, G.: Macroscopic modelling of vascular systems. In: Medical Image Computing and Computer-Assisted Intervention, pp. 284–292 (2002)

    Google Scholar 

  95. Szekely, G., Bajka, M., Brechbuehler, C., Dual, J., Enzler, R., Haller, U., Hug, J., Hutter, R., Ironmonger, N., Kauer, M., Meier, V., Niederer, P., Rhomberg, A., Schmid, P., Schweitzer, G., Thaler, M., Vuskovic, V., Troester, G.: Virtual reality-based simulation of endoscopic surgery. Presence 9(3), 310–333 (2000)

    Article  Google Scholar 

  96. Taubin, G.: Curve and surface smoothing without shrinkage. In: Fifth International Conference on Computer Vision, pp. 852–857 (1995)

    Chapter  Google Scholar 

  97. Treece, G.M., Prager, R.W., Gee, A.H.: Regularised marching tetrahedra: Improved iso-surface extraction. Comput. Graph. 23(4), 583–598 (1998)

    Article  Google Scholar 

  98. Tuchschmid, S., Bajka, M., Szczerba, D., Lloyd, B., Szekely, G., Harders, M.: Modelling intravasation of liquid distension media in surgical simulators. In: Medical Image Computing and Computer-Assisted Intervention, vol. 4791, pp. 717–724 (2007)

    Google Scholar 

  99. Van Gool, L., Defoort, F., Hug, J., Kalberer, G.A., Koch, R., Martens, D., Pollefeys, M., Proesmans, M., Vergauen, M., Zalesny, A.: Image-based 3D modeling: modeling from reality. In: Leonardis, A., Solina, F., Bajcsy, R. (eds.) Confluence of Computer Vision and Computer Graphics, vol. 84, pp. 161–178. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  100. Vemuri, B.C., Radisavljevic, A.: Multiresolution stochastic hybrid shape models with fractal priors. ACM Trans. Graph. 13(2), 177–207 (1994)

    Article  MATH  Google Scholar 

  101. von Neumann, J.: Theory of Self-reproducing Automata. University of Illinois Press, Champaign (1966)

    Google Scholar 

  102. Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, vol. 19, pp. 33–37 (2007)

    Google Scholar 

  103. Wasserman, R., Acharya, R.: A patient-specific in vivo tumor model. Math. Biosci. 136(2), 111–140 (1996)

    Article  MATH  Google Scholar 

  104. Wei, L.-Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 479–488 (2000)

    Google Scholar 

  105. Weishaupt, D., Koechli, V.D., Marincek, B.: How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging, 2nd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  106. Yamada, H.: Strength of Biological Materials. Williams and Wilkins Company, Baltimore (1970)

    Google Scholar 

  107. Ziou, D., Tabbone, S.: Edge detection techniques—an overview. Int. J. Pattern Recognit. Image Anal. 8, 537–559 (1998)

    Google Scholar 

  108. Zitova, B.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Riener .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Riener, R., Harders, M. (2012). Medical Model Generation. In: Virtual Reality in Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4011-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4011-5_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4010-8

  • Online ISBN: 978-1-4471-4011-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics