Skip to main content

Zinc Status and Food Intake

  • Chapter
Zinc in Human Biology

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

Zinc deficiency induces a complex of pathological signs in all animal species studied. Among them are reduced growth rate and food intake, alopecia, skin lesions including parakeratosis and hyperkeratinization, impaired skeletal development and abnormal gait and stance. Of these visual signs, decreased food consumption is one of the first, if not the first, to be exhibited as deficiency develops. Reduced food intake in turn has dramatic effects on many other physiological and biochemical parameters so that it is difficult to distinguish the effects of reduced food intake from those specific to zinc deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts JC, Lang JA, Reyes PS, Briggs GM (1977) Zinc requirement of the young guinea pig. J Nutr 107: 1517–1527

    PubMed  CAS  Google Scholar 

  • Anonymous (1981) Decreased taste acuity in chronic renal patients. Nutr Rev 39: 207–210

    Google Scholar 

  • Ashley DVM, Anderson GH (1975) Correlation between the plasma tryptophan to neutral amino acid ratio and protein intake in the self-selecting weanling rat. J Nutr 105: 1412–1421

    PubMed  CAS  Google Scholar 

  • Baer MT, King JC, Tamura T et al. (1985) Nitrogen utilization, enzyme activity, glucose intolerance and leukocyte chemotaxis in human experimental zinc depletion. Am J Clin Nutr 41: 1220–1235

    PubMed  CAS  Google Scholar 

  • Baile CA, McLaughlin CL, Della-Fera MA (1986) Role of cholecystokinin and opioid peptides in control of food intake. Physiol Rev 66: 172–234

    PubMed  CAS  Google Scholar 

  • Baker JL, Crayton JW, Nicoll RA (1971) Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J Physiol 218: 19–32

    Google Scholar 

  • Bettger WJ (1985) Effect of dietary protein or amino acids on the rapid change in plasma zinc concentration in rats fed zinc deficient diets. Nutr Res 5: 1153–1159

    Article  CAS  Google Scholar 

  • Catalanotto FA (1979) Alterations of short-term tastant-containing fluid intake in zinc deficient adult rats. J Nutr 109: 1079–1085

    PubMed  CAS  Google Scholar 

  • Chesters JK, Quarterman J (1970) Effects of zinc deficiency on food intake and feeding patterns of rats. Br J Nutr 24: 1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Chesters JK, Will M (1973) Some factors controlling food intake by zinc-deficient rats. Br J Nutr 30: 555–566

    Article  PubMed  CAS  Google Scholar 

  • Essatara M’B, McClain CJ, Levine AS, Morley JE (1984a) Zinc deficiency and anorexia in rats: the effect of central administration of norepinephrine, muscimol and bromergocryptine. Physiol Behav 32: 479–482

    Article  Google Scholar 

  • Essatara M’B, Morley JE, Levine AS, Elson MK, Shafer RB, McClain CJ (1984b) The role of endogenous opiates in zinc deficiency anorexia. Physiol Behav 32: 475–478

    Article  Google Scholar 

  • Faraji B, Swenseid ME (1983) Growth rate, tissue zinc levels and activities of selected enzymes in rats fed a zinc-deficient diet by gastric tube. J Nutr 113: 447–455

    PubMed  CAS  Google Scholar 

  • Flanagan PR (1984) A model to produce pure zinc deficiency in rats and its use to demonstrate that dietary phytate increases the excretion of endogenous zinc. J Nutr 114: 493–502

    PubMed  CAS  Google Scholar 

  • Fraker PJ, Haas SM, Luecke RW (1977) Effect of zinc deficiency on the immune response of the young adult A/J mouse. J Nutr 107: 1889–1895

    PubMed  CAS  Google Scholar 

  • Gibson CJ, Wurtman RJ (1977) Physiological control of brain catechol synthesis by brain tyrosine concentration. Biochem Pharmacol 26: 1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Golden MHN, Golden BE (1981) Effect of zinc supplementation on the dietary intake, rate of weight gain and energy cost of tissue deposition in children recovering from severe malnutrition. Am J Clin Nutr 34: 900–908

    PubMed  CAS  Google Scholar 

  • Gordon PR, O’Dell BL (1983) Zinc deficiency and impaired platelet aggregation in guinea pigs. J Nutr 113: 239–245

    PubMed  CAS  Google Scholar 

  • Griffith PR, Alexander JC (1972) Effect of zinc deficiency on amino acid metabolism of the rat. Nutr Repts Intl 6: 9–20

    CAS  Google Scholar 

  • Grossman SP (1962) Direct adrenergic and cholinergie stimulation of hypothalamus mechanisms. Am J Physiol 202: 872–882

    PubMed  CAS  Google Scholar 

  • Heffner TG, Hartman JA, Seiden LS (1980) Feeding increased dopamine metabolism in the rat. Science 208: 1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Henkin RI (1984) Zinc in taste function. Biol Trace Element Res 6: 263–280

    Article  CAS  Google Scholar 

  • Kasarkis EJ, Sparks DL, Slevin JT (1986) Changes in hypothalamic noradrenergic systems during the anorexia of zinc deficiency. Biol Trace Element Res 9: 25–35

    Article  Google Scholar 

  • Krebs NF, Hambidge KM, Walravens PA (1984) Increased food intake of young children receiving a zinc supplement. Am J Dis Child 138: 270–273

    PubMed  CAS  Google Scholar 

  • Leibowitz SF (1980) Control of feeding and drinking behavior and water electrolyte excretion. In: Morgane PJ, Panksepp J (eds) Behavioral studies on the hypothalamus, vol 3, part A. Marcel Dekker, New York, pp 229–437

    Google Scholar 

  • Leibowitz SF, Brown LL (1980) Histochemical and pharmacological analysis of noradrenergic projections to the paraventricular hypothalamus in relation to feeding stimulation. Brain Res 201: 289–314

    Article  PubMed  CAS  Google Scholar 

  • Macapinlac MP, Barney GH, Pearson WN, Darby WJ (1967) Production of zinc deficiency in the squirrel monkey. J Nutr 93: 499–510

    PubMed  CAS  Google Scholar 

  • Miller JK, Miller WJ (1962) Experimental zinc deficiency and recovery of calves. J Nutr 76: 467–474

    PubMed  CAS  Google Scholar 

  • Meyers RD (1975) Handbook of drug and chemical stimulation of the brain. Van Nostrand Reinhold, New York

    Google Scholar 

  • O’Dell BL, Newberne PM, Savage JE (1958) Significance of dietary zinc for the growing chicken. J Nutr 65: 503–523

    PubMed  Google Scholar 

  • Ott EA, Smith WH, Stob M, Beeson WM (1964) Zinc deficiency syndrome in the young lamb. J Nutr 82: 41–50

    PubMed  CAS  Google Scholar 

  • Park JHY, Grandjean CJ, Hart MH, Erdman SH, Pour P, Vanderhoof JA (1986) Effect of pure zinc deficiency on glucose tolerance and insulin and glucagon levels. Am J Physiol 251: E273 — E278

    PubMed  CAS  Google Scholar 

  • Peng Y, Benevenga NJ, Harper AE (1969) Amino acid imbalance and food intake: effect of previous diet on plasma amino acids. Am J Physiol 216: 1020–1025

    PubMed  CAS  Google Scholar 

  • Prasad AS, Miale A, Farid Z, Sandstead HH, Schulert AR, Darby WJ (1963) Biochemical studies on dwarfism, hypogonadism, and anemia. Arch Int Med 111: 407–428

    Article  CAS  Google Scholar 

  • Prasad AS, Rabbani P, Abbassi A, Bowersox E, Spivey Fox MR (1978) Experimental zinc deficiency in human. Ann Intern Med 89: 483–490

    PubMed  CAS  Google Scholar 

  • Quarterman J, Humphries WR (1983) The production of zinc deficiency in the guinea pig. J Comp Pathol 93: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Quarterman J, Williams RB, Humphries WR (1970) An apparatus for the regulation of the food supply to rats. Br J Nutr 24: 1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Record IR, Dreosti IE, Tulsi RS, Manuel SJ (1986) Maternal metabolism and teratogenesis in zinc-deficient rats. Teratology 33: 311–317

    Article  PubMed  CAS  Google Scholar 

  • Reeves PG, O’Dell BL (1981a) Short-term zinc deficiency in the rat and self-selection of dietary protein level. J Nutr 111: 375–383

    PubMed  CAS  Google Scholar 

  • Reeves PG, O’Dell BL (1981b) Regulation of protein intake in zinc deficient rats. In: Howell JMcC, Gawthorne JM, White CL (eds) Trace element metabolism in animals and man. Australian Academy of Science, Canberra, pp 338–341

    Chapter  Google Scholar 

  • Reeves PG, O’Dell BL (1983) The effect of zinc deficiency on glucose metabolism in meal-fed rats. Br J Nutr 49: 441–452

    Article  PubMed  CAS  Google Scholar 

  • Reeves PG, O’Dell BL (1984) The effect of dietary tyrosine levels on food intake in zinc deficient rats. J Nutr 114: 761–767

    PubMed  CAS  Google Scholar 

  • Stirn FE, Elvehjem CA, Hart EB (1935) The indispensability of zinc in the nutrition of the rat. J Biol Chem 109: 347–359

    CAS  Google Scholar 

  • Tucker HF, Salmon WD (1955) Parakeratosis or zinc deficiency disease in the pig. Proc Soc Exp Biol Med 88: 613–616

    PubMed  CAS  Google Scholar 

  • Wallwork JC, Sandstead HH (1983) Effect of zinc deficiency on appetite and free amino acid concentrations in rat brain. J Nutr 113: 47–54

    PubMed  CAS  Google Scholar 

  • Wallwork JC, Fosmire GJ, Sandstead HH (1981) Effect of zinc deficiency on appetite and plasma amino acid concentrations in the rat. Br J Nutr 45: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Wallwork JC, Botnen JH, Sandstead HH (1982) Influence of dietary zinc on rat brain catecholamines. J Nutr 112: 514–519

    PubMed  CAS  Google Scholar 

  • Walravens PA, Hambidge KM (1976) Growth of infants fed a zinc supplemented formula. Am J Clin Nutr 29: 1114–1121

    PubMed  CAS  Google Scholar 

  • Williams RB, Mills CF (1970) The experimental production of zinc deficiency in the rat. Br J Nutr 24: 989–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Dell, B.L., Reeves, P.G. (1989). Zinc Status and Food Intake. In: Mills, C.F. (eds) Zinc in Human Biology. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-3879-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3879-2_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3881-5

  • Online ISBN: 978-1-4471-3879-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics