Skip to main content

The Intelligent Welding Gun: Augmented Reality for Experimental Vehicle Construction

  • Chapter
Virtual and Augmented Reality Applications in Manufacturing

Abstract

This chapter presents the prototypical design and implementation of an Intelligent Welding Gun to help welders in the automotive industry shoot studs with high precision into experimental vehicles. A presentation of the stud welding scenario and the system requirements identified is followed by a thorough exploration of the design space of the potential system setups, analyzing the feasibility of different options to place sensors, displays and landmarks in the work area. The setup yielding the highest precision for stud welding purposes is the Intelligent Welding Gun, which is a regular welding gun with a display attachment, a few buttons for user interactions, and reflective markers to track the gun position from stationary cameras. While welders operate and move the gun, the display shows 3D stud locations on the car frame relative to the current gun position. Navigational metaphors, such as notch and bead and a compass, are used to help welders place the gun at the planned stud positions with the required precision. The setup has been tested by a number of welders. It shows significant time improvements over the traditional stud welding process. It is currently in the process of being modified and installed for production use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • ART GmbH (2003) ARTrackl. http://www.ar-tracking.de

    Google Scholar 

  • Azuma R (1997) A Survey of Augmented Reality. Presence 6(4):355–385

    Google Scholar 

  • Azuma R (1999) The Challenge of Making Augmented Reality Work Outdoors. In: Proceedings of the International Symposium on Mixed Reality (ISMR’99), Yokohama, Japan. Springer Verlag, pp 379–390

    Google Scholar 

  • Bandyopadhay D, Raskar R, Fuchs H (2001) Dynamic Shader Lamps: Painting on Movable Objects. In: Proceedings of the International Symposium on Augmented Reality (ISAR’01), New York. IEEE, pp 207–216

    Chapter  Google Scholar 

  • Bauer M, Bruegge B, Klinker G, MacWilliams A, Reicher T, Riss S, Sandor C, Wagner M (2001) Design of a Component-based Augmented Reality Framework. In: Proceedings of the International Symposium on Augmented Reality (ISAR’01), New York. IEEE, pp 45–53

    Chapter  Google Scholar 

  • Curtis D, Mizell D, Gruenbaum P, Janin A (1998) Several Devils in the Details: Making an AR Work in the Airplane Factory. In: Proceedings of the International Workshop on Augmented Reality (IWAR’98), San Francisco. AK Peters, pp 47–60

    Google Scholar 

  • Feiner S, MacIntyre B, Höllerer T (1999) Wearing it out: First Steps Toward Mobile Augmented Reality Systems. In: Proceedings of the International Symposium on Mixed Reality (ISMR’99), Yokohama, Japan. Springer Verlag, pp 363–377

    Chapter  Google Scholar 

  • Friedrichs W (2002) ARVIKA Augmented Reality for Development, Production, and Service. In: Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR’02), Darmstadt, Germany, pp 2–4. http://www.arvika.de/www/pdf/IVIP Forum e.pdf.

    Google Scholar 

  • Genc Y, Riedel S, Souvannavong F, Akinlar C, Navab N (2002) Marker-less Tracking for AR: A Learning-based Approach. In: Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR’02), Darmstadt, Germany. IEEE, pp 169–175

    Chapter  Google Scholar 

  • HIT Lab (2003) AR Toolkit Library, http://www.hitl.washington.edu/people/ poup/research/ar.htm

    Google Scholar 

  • Julier S, Lanzagorta M, Baillot Y, Rosenblum L, Feiner S, Höllerer T, Sestito S (2000) Information Filtering for Mobile Augmented Reality. In: Proceedings of the International Symposium on Augmented Reality (ISAR’00), Munich. IEEE, pp 3–11

    Chapter  Google Scholar 

  • Kato H, Billinghurst M, Poupyrev I, Imamoto K, Tachibana K (2000) Virtual Object Manipulation on a Table-top AR Environment. In: Proceedings of the International Symposium on Augmented Reality (ISAR’00), Munich. IEEE, pp 111–119

    Chapter  Google Scholar 

  • Klinker G, Stricker D, Reiners D (1999) An Optically Based Direct Manipulation Interface for Human-Computer Interaction in an Augmented World. Computers and Graphics 23(6):827–830

    Article  Google Scholar 

  • Milgram P, Colquhoun JH (1999) A Taxonomy of Real and Virtual World Display Integration. In: Proceedings of the International Symposium on Mixed Reality (ISMR’99), Yokohama, Japan. Springer Verlag, pp 5–30

    Chapter  Google Scholar 

  • Mizell D (2000) Augmented Reality Applications in Aerospace. In: Proceedings of the International Symposium on Augmented Reality (ISAR’00), Munich. IEEE, p xi

    Google Scholar 

  • Newman J, Ingram D, Hopper A (2001) Augmented Reality in a Wide Area Sentient Environment. In: Proceedings of the International Symposium on Augmented Reality (ISAR’01), New York. IEEE, pp 77–86

    Chapter  Google Scholar 

  • Park J, You S, Neumann U (1998) Natural Feature Tracking for Extendible Robust Augmented Reality. In: Proceedings of the International Workshop on Augmented Reality (IWAR’98), San Francisco. AK Peters, pp 209–218

    Google Scholar 

  • Raskar R, Welch G, Fuchs H (1998) Spatially Augmented Reality. In: Proceedings of the International Workshop on Augmented Reality (IWAR’98). AK Peters, San Francisco, pp 63–72

    Google Scholar 

  • Reiners D, Stricker D, Klinker G, Müller S (1998) Augmented Reality for Construction Tasks: Doorlock Assembly. In: Proceedings of the International Workshop on Augmented Reality (IWAR’98), San Francisco. AK Peters, pp 31–46

    Google Scholar 

  • Rekimoto J (1996) Transvision: A Hand-held Augmented Reality System for Collaborative Design. Sony Computer Science Laboratory Inc., Tokyo, Japan, rekimoto@csl.sony.co.jp

    Google Scholar 

  • Rolland J, Davis L, Baillot Y (2001) A Survey of Tracking Technology for Virtual Environments. In: Barfield W, Caudell P (Eds), Fundamentals of Wearable Computers and Augmented Reality. Lawrence Erlbaum Associates, pp 67–112. ISBN 0–8058-2902–4

    Google Scholar 

  • Schmalstieg D, Fuhrmann A, Hesina G (2000) Bridging Multiple User Interface Dimensions with Augmented Reality. In: Proceedings of the International Symposium on Augmented Reality (ISAR’OO), Munich. IEEE, pp 20–29

    Chapter  Google Scholar 

  • Simon G, Fitzgibbon A, Zisserman A (2000) Marker-less Tracking Using Planar Structures in the Scene. In: Proceedings of the International Symposium on Augmented Reality (ISAR’OO), Munich. IEEE, pp 111–119

    Google Scholar 

  • State A, Hirota G, Chen D, Garrett W, Livingston M (1996) Superior Augmented Reality Registration by Integrating Landmark Tracking and Magnetic Tracking. In: Proceedings of SIGGRAPH, New Orleans. ACM Press pp 429–438

    Google Scholar 

  • Stetten G, Chib V, Hildebrand D, Bursee J (2001) Real Time Tomographic Reflection: Phantoms for Calibration and Biopsy. In: Proceedings of the International Symposium on Augmented Reality (ISAR’01), New York. IEEE, pp 11–19

    Chapter  Google Scholar 

  • Stricker D, Klinker G, Reiners D (1998) A Fast and Robust Line-Based Optical Tracker for Augmented Reality Applications. In: Proceedings of the International Workshop on Augmented Reality (IWAR’98), San Francisco. AK Peters, pp 129–145

    Google Scholar 

  • Tamura H (2000) What Happens at the Border Between Real and Virtual Worlds — the MR Project and Other Research Activities in Japan. In: Proceedings of the International Symposium on Augmented Reality (ISAR’OO), Munich. IEEE, pp xii–xv

    Google Scholar 

  • Underkoffler J, Ullmer B, Ishii H (1999) Emancipated Pixels: Real-World Graphics in the Luminous Room. In: Proceedings of SIGGRAPH. ACM Press, pp 385–392

    Google Scholar 

  • VRCom GmbH (2003) VD2. http://www.vrcom.de

  • Zürl K (2002) Frame-based Camera Placement. Personal Communication, A.R.T. GmbH

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Echtler, F. et al. (2004). The Intelligent Welding Gun: Augmented Reality for Experimental Vehicle Construction. In: Ong, S.K., Nee, A.Y.C. (eds) Virtual and Augmented Reality Applications in Manufacturing. Springer, London. https://doi.org/10.1007/978-1-4471-3873-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3873-0_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-921-5

  • Online ISBN: 978-1-4471-3873-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics