Advertisement

Effect of lung volume on in vivo contraction characteristics of the human diaphragm

  • J. Smith
  • F. Bellemare
Conference paper
Part of the Current Topics in Rehabilitation book series (CURRENT REHAB)

Summary

We performed transcutaneous bilateral phrenic nerve stimulation at varying lung volumes between RV and TLC in 6 normal male volunteers. Peak twitch transdiaphragmatic pressure declined from a mean of 49.1 (SD: 9.1) cm H2O at RV to a mean of 19.6 cm H2O (SD: 5.97) at TLC. Twitch contraction time fell from a mean of 91.8 (SD: 11.3) at RV to a mean of 57.7 ms (SD: 7.4) at TLC. There was a good correlation between changes in contraction time and transdiaphragmatic pressure (r = 0.7). The fall in transdiaphragmatic pressure was almost all due to a fall in pleural pressure, with little change in gastric pressure between RV and TLC. At TLC the pleural pressure in response to phrenic nerve stimulation was −0.58 cm H2O. We conclude that as lung volume increases and the diaphragm shortens, it becomes less effective as a pressure. At a lung volume close to TLC the diaphragm ceases to act as an inspiratory muscle.

Key Words

Lung volume contraction characteristics in vivo diaphragm phrenic nerve stimulation transcutaneous bilateral pleural pressure gastric pressure inspiratory muscle. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AGOSTONI E., RAHN H.: Abdominal and thoracic pressures at different lung volumes. J. Appl. Physiol. 1960. 1087–1092.Google Scholar
  2. 2.
    BELLEMARE F., BIGLAND-RITCHIE B.: Assessment of human diaphragm strength and activation using phrenic nerve stimulation. Respir. Physiol. 1984. 58: 263–277.PubMedCrossRefGoogle Scholar
  3. 3.
    BELLEMARE F., BIGLAND-RITCHIE B., Woods J.J.: Contractile properties of the human diaphragm in vivo. J. Appl. Physiol. (In Press).Google Scholar
  4. 4.
    BRAUN N.M., ARORA N.S., ROCHESTER D.F.: Force length relationship of the normal human diaphragm. J. Appl. Physiol. 1982. 53: 405–412.PubMedGoogle Scholar
  5. 5.
    D’ANGELO E., SANT’AMBROGIO G.: Direct action of contracting diaphragm on the rib cage in rabbits and dogs. J. Appl. Physiol. 1974. 36: 715–719.PubMedGoogle Scholar
  6. 6.
    DANON J., DRUZ W.S., GOLDBERG N.B., SHARP J.T.: Function of the isolated paced diaphragm and the cervical accessory muscles in Cl quadriplegics. Am. Rev. Respir. Dis. 1979. 119: 909–919.PubMedGoogle Scholar
  7. 7.
    EDWARDS R.H.T.: The diaphragm as a muscle: Mechanism underlying fatigue. Am. Rev. Respir. Dis. 1979. 119 (suppl. part 2): 81–84.PubMedGoogle Scholar
  8. 8.
    EDWARDS R.H.T., FAULKNER J.A.; Lung biology in health and disease, In: The Thorax, Part A. Respiratory muscles: Structure and Function. New York, Structure and Function. 1986. Vol. 29, p. 297.Google Scholar
  9. 9.
    EVANICH M.I., FRANCO M.J., LOURENCO R.V. Force output of the diaphragm as a function of phrenic nerve firing rate and lung volume. J. Appl. Physiol. 1973. 35: 208–212.PubMedGoogle Scholar
  10. 10.
    FARKAS G.A., ROUSSOS CH.: Acute diaphragmatic shortening: In vitro mechanics and fatigue. Am. Rev. Respir. Dis. 1984. 130: 434–438.PubMedGoogle Scholar
  11. 11.
    GILLESPIE J.L.: Mechanisms that determine functional residual capacity in different mammalian species. Am. Rev. Respir. Dis. 1983. 128: (suppl. part. II): S74 - S77.PubMedGoogle Scholar
  12. 12.
    KIM M.J., DRUZ W.S., DANON J., MACHNACK W., SHARP J.T.: Mechanics of the canine diaphragm. J. Appl. Physiol. 1976. 41: 369–382.PubMedGoogle Scholar
  13. 13.
    LORING S.H., MEAD J., GRISCOM N.T. Dependance of diaphragmatic length on lung volume and thoracoabdominal configuration. J. Appl. Physiol. 1985. 59: 1961–1970.PubMedGoogle Scholar
  14. 14.
    MCCULLY K.K., FAULKNER J.A.: Length tension of mammalian diaphragmatic muscles. J. Appl. Physiol. 1983. 54: 1681–1686.PubMedGoogle Scholar
  15. 15.
    MARSHALL R.: Relationships between stimulus and work of breathing at different lung volumes. J. Appl. Physiol. 1962. 17: 917–921.Google Scholar
  16. 16.
    MILIC-EMILI J., TURNER J.M., GLAUSER E.M.: Improved technique for estimating pleural pressure from esophageal balloons. J. Appl. Physiol. 1964. 19: 207–211/Google Scholar
  17. 17.
    MINH V.D., DOLAN G.F., KANOPKA R.F., MOSER K.M.: Effect of hyperinflation on inspiratory function of the diaphragm. J. Appl. Physiol. 1976. 40: 67–73.PubMedGoogle Scholar
  18. 18.
    NEWMAN S., ROAD J., BELLEMARE F., Clozel J.P., LAVIGNE C.M., GRASSINO A.: Respiratory muscle length measured by sonomicrometry. J. Appl. Physiol. 1984. 56 753–764.PubMedGoogle Scholar
  19. 19.
    PENGELLY M.D., ALDERSON A., MILIC-EMILI J.: Mechanics of the diaphragm. J. Appl. Physiol. 1971. 30: 797–805.PubMedGoogle Scholar
  20. 20.
    PETIT J.M., MILIC-EMILI J., DELHEZ L.: Role of the diaphragm in breathing in conscious man, an electromyography study. J. Appl. Physiol. 1964. 15: 1101–1106.Google Scholar
  21. 21.
    RACK P.M.H., WESTBURY D.R.: The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J. Physiol. (London) 1969. 204: 443–460.Google Scholar
  22. 22.
    SANT’AMBROGIO G., SAIBENE F.: Contractile properties of the diaphragm in some mammals. Resp. Physiol. 1970. 10: 349–357.CrossRefGoogle Scholar
  23. 23.
    SARNOFF S.J., SARNOFF L.C., WHITTENBERG J.L.: Electrophrenic respiration. VII. The motor point of the phrenic nerve in relation to external stimulation. Surg. Gynecol. Obstet. 1951. 93: 190–196.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Smith
    • 1
  • F. Bellemare
    • 1
  1. 1.Meakins-Christie LaboratoriesMcGill UniversityMontrealCanada

Personalised recommendations