Skip to main content

Bisphosphonates

  • Chapter
  • 309 Accesses

Abstract

The bisphosphonates, in the past erroneously called diphosphonates, have been known to the chemists since the middle of the nineteenth century, the first synthesis dating back to 1865 in Germany. Their use was industrial, mainly in the textile, fertilizer and oil industries, and, because of their property of inhibiting calcium carbonate precipitation, as preventors of scaling. Our knowledge of the biological characteristics of bisphosphonates dates back 30 years, the first report on them being produced by the author’s group in 1968.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969;165: 1262–1264.

    Article  PubMed  CAS  Google Scholar 

  2. Schenk R, Merz WA, Mühlbauer R, Russell RGG, Fleisch H. Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (C12MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaph-ysis of rats. Calcif Tissue Res 1973;11:196–214.

    Article  PubMed  CAS  Google Scholar 

  3. Gasser AB, Morgan DB, Fleisch HA, Richelle LJ. The influence of two diphosphonates on calcium metabolism in the rat. Clin Sci 1972;43:31–45.

    PubMed  CAS  Google Scholar 

  4. Reitsma PH, Bijvoet OLM, Verlinden-Ooms H, van der Wee-Pals LJA. Kinetic studies of bone and mineral metabolism during treatment with (3-amino-l-hydroxy-propylidene)-l,l-bisphosphonate (APD) in rats. Calcif Tissue Int 1980;32:145–157.

    Article  PubMed  CAS  Google Scholar 

  5. Garnero P, Shih WJ, Gineyts E, Karpf DB, Delmas PD. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 1994;79:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  6. Russell RGG, Mühlbauer RC, Bisaz S, Williams DA, Fleisch H. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif Tissue Res 1970;6:183–196.

    Article  PubMed  CAS  Google Scholar 

  7. Martodam RR, Thornton KS, Sica DA, D’Souza SM, Flora L, Mundy GR. The effects of dichloromethylene diphosphonate on hypercalcaemia and other parameters of the humoral hypercalcemia of malignancy in the rat Leydig cell tumor. Calcif Tissue Int 1983;35:512–519.

    Article  PubMed  CAS  Google Scholar 

  8. Mühlbauer RC, Russell RGG, Williams DA, Fleisch H. The effects of diphosphonates, polyphosphates and calcitonin on “immobilisation osteoporosis” in rats. Eur J Clin Invest 1971;1:336–344.

    Article  PubMed  Google Scholar 

  9. Balena R, Toolan BC, Shea M, Markatos A, Myers ER, Lee SC et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized non human primates. J Clin Invest 1993;92:2577–2586.

    Article  PubMed  CAS  Google Scholar 

  10. Boyce RW, Paddock CL, Gleason JR, Sletsema WK, Eriksen EF. The effects of rise-dronate on canine cancellous bone remodelling: Three-dimensional kinetic reconstruction of the remodelling site. J Bone Miner Res 1995;10:211–221.

    Article  PubMed  CAS  Google Scholar 

  11. Ferretti JL. Effects of bisphosphonates on bone biomechanics. In: Bijvoet OLM, Fleisch HA, Canfield RE, Russell RGG, editors. Bisphosphonate on bones, Amsterdam: Elsevier, 1995:211–229.

    Google Scholar 

  12. Reynolds JJ, Minkin C, Morgan DB, Spycher D, Fleisch H. The effect of two diphosphonates on the resorption of mouse calvaria in vitro. Calcif Tissue Res 1972;10: 302–313.

    Article  PubMed  CAS  Google Scholar 

  13. Flanagan AM, Chambers TJ. Dichloromethylenebisphosphonate (C12MBP) inhibits bone resorption through injury to osteoclasts that resorb Cl2MBP-coated bone. Bone Miner 1989;6:33–43.

    Article  PubMed  CAS  Google Scholar 

  14. Shinoda H, Adamek G, Felix R, Fleisch H, Schenk R, Hagan P. Structure-activity relationships of various bisphosphonates. Calcif Tissue Int 1983;35:87–99.

    Article  PubMed  CAS  Google Scholar 

  15. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, et al. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991;88:2095–2106.

    Article  PubMed  CAS  Google Scholar 

  16. Felix R, Guenther HL, Fleisch H. The subcellular distribution of (14C)dichloromethyl-enebisphosphonate and (14C)1-hydroxyethylidene-1,1-bisphosphonate in cultured calvaria cells. Calcif Tissue Int 1984;36:108–113.

    Article  PubMed  CAS  Google Scholar 

  17. Masarachia P, Weinreb M, Balena R, Rodan GA. Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone 1996;19:281–290.

    Article  PubMed  CAS  Google Scholar 

  18. Hughes DE, MacDonald BR, Russell RGG, Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest 1989;83:1930–1935.

    Article  PubMed  CAS  Google Scholar 

  19. Colucci S, Minielli V, Zambonin G, Grano M. Etidronate inhibits osteoclast adhesion to bone surfaces but does not interfere with their specific recognition of single bone proteins. It J Miner Electrolyte Metab 1995;9:159–164.

    CAS  Google Scholar 

  20. Van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Löwik C, Papapoulos S. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 1996;98:698–705.

    Article  PubMed  Google Scholar 

  21. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995;10:1478–1487.

    Article  PubMed  CAS  Google Scholar 

  22. Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 1993;91:2004–2011.

    Article  PubMed  CAS  Google Scholar 

  23. Vitté C, Fleisch H, Guenther HL. Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 1996;137:2324–2333.

    Article  PubMed  Google Scholar 

  24. Fast DK, Felix R, Dowse C, Neuman WF, Fleisch H. The effects of diphosphonates on the growth and glycolysis of connective-tissue cells in culture. Biochem J 1978; 172:97–107.

    PubMed  CAS  Google Scholar 

  25. Zimolo Z, Wesolowski G, Rodan GA. Acid extrusion is induced by osteoclast attachment to bone: inhibition by alendronate and calcitonin. J Clin Invest 1995;96:2277–2283.

    Article  PubMed  CAS  Google Scholar 

  26. Ohya K, Yamada S, Felix R, Fleisch H. Effect of bisphosphonates on prostaglandin synthesis by rat bone cells and mouse calvaria in culture. Clin Sci 1985;69:403–411.

    PubMed  CAS  Google Scholar 

  27. Endo N, Rutledge SJ, Opas EE, Vogel R, Rodan GA, Schmidt A. Human protein tyrosine phosphatase-cr: alternative splicing and inhibition by bisphosphonates. J Bone Miner Res 1996;11:535–543.

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt A, Rutledge SJ, Endo N, Opas EE, Tanaka H, Wesolowski G et al. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc Natl Acad Sci USA 1996;93:3068–3073.

    Article  PubMed  CAS  Google Scholar 

  29. Luckman SP, Hughes DE, Coxon FP, Russell RGG, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 1998;13:581–589.

    Article  PubMed  CAS  Google Scholar 

  30. Rogers MJ, Brown RJ, Hodkin W, Blackburn GM, Russell RGG, Watts DJ. Bisphosphonates are incorporated into adenine nucleotides by human aminoacyl-tRNA synthetase enzymes. J Bone Miner Res 1996;11:1482–1491.

    Article  PubMed  CAS  Google Scholar 

  31. Fleisch H, Russell RGG, Bisaz S, Mühlbauer RC, Williams DA. The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Invest 1970;1:12–18.

    Article  PubMed  CAS  Google Scholar 

  32. Jung A, Bisaz S, Fleisch H. The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 1973;11:269–280.

    Article  PubMed  CAS  Google Scholar 

  33. Fleisch H. Bisphosphonates: mechanisms of action. Endocrinol Rev 1997;19:80–100.

    Article  Google Scholar 

  34. Meunier PJ, Boivin G. Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 1997;21:373–377.

    Article  PubMed  CAS  Google Scholar 

  35. Chesnut CH III, McClung MR, Ensrud KE et al. Alendronate treatment of the postmenopausal osteoporotic woman: effect of multiple dosages on bone mass and bone remodelling. Am J Med 1995;99:144–152.

    Article  PubMed  CAS  Google Scholar 

  36. Liberman UA, Weiss SR, Bröll J et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 1995;333:1437–1443.

    Article  PubMed  CAS  Google Scholar 

  37. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt M, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996;348:1535–1541.

    Article  PubMed  CAS  Google Scholar 

  38. Devogelaer JP, Broil H, Correa-Rotter R, Cumming DC, Nagant de Deuxchaisnes C, Geusens P, et al. Oral alendronate induces progressive increase in bone mass of the spine, hip, and total body over 3 years in postmenopausal women with osteoporosis. Bone 1996;18:141–150.

    Article  PubMed  CAS  Google Scholar 

  39. Tucci JR, Tonino RP, Emkey RD, Peverly CA, Kher U, Santora II AC. Effect of three years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med 1996;101:488–501.

    Article  PubMed  CAS  Google Scholar 

  40. Bone HG, Downs RW, Tucci JR, Harris ST, Weinstein RS, Licata AA, et al. Doseresponse relationships for alendronate treatment in osteoporotic elderly women. J Clin Endocrinol Metab 1997;82:265–274.

    Article  PubMed  CAS  Google Scholar 

  41. Hosking D, Chilvers CED, Christiansen C, Ravn P, Wasnich R, Ross P, et al. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. N Engl J Med 1998;338:485–492.

    Article  PubMed  CAS  Google Scholar 

  42. Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere F, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 1998;339:292–299.

    Article  PubMed  CAS  Google Scholar 

  43. Stock JL, Bell NH, Chesnut CH, Ensrud KE, Genant HK, Harris ST, McClung MR, et al. Increments in bone mineral density of the lumbar spine and hip and suppression of bone turnover are maintained after discontinuation of alendronate in postmenopausal women. Am J Med 1997 103:291–297.

    Article  Google Scholar 

  44. Shiraki M, Kushida K, Fukunaga M, Kishimoto H, Kaneda K, Minaguchi H, et al. A placebo-controlled, single-blind study to determine the appropriate alendronate dosage in postmenopausal Japanese patients with osteoporosis. Endocrinol J 1998;45:191–201.

    CAS  Google Scholar 

  45. Chavassieux PM, Arlot ME, Reda C, Wei L, Yates J, Meunier PM. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodelling in patients with osteoporosis. J Clin Invest 1997;100:1475–1480.

    Article  PubMed  CAS  Google Scholar 

  46. Storm T, Thamsborg G, Steiniche T, Genant HK, Sorensen OH. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 1990;322:1265–1271.

    Article  PubMed  CAS  Google Scholar 

  47. Watts NB, Harris ST, Genant HK, et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 1990;323:73–79.

    Article  PubMed  CAS  Google Scholar 

  48. Storm T, Kollerup G, Thamsborg G, Genant HK, Sorensen OH. Five years of clinical experience with intermittent cyclical etidronate for postmenopausal osteoporosis. J Rheumatol 1996;23:1560–1564.

    PubMed  CAS  Google Scholar 

  49. Harris ST, Watts NB, Jackson, et al. Four-year study of intermittent cyclic etidronate treatment of postmenopausal osteoporosis: Three years of blinded therapy followed by one year of open therapy. Am J Med 1993;95:557–567.

    Article  PubMed  CAS  Google Scholar 

  50. Miller PD, Watts NB, Licata AA, Harris ST, Genant HK, Wasnich RD, et al. Cyclical etidronate in the treatment of postmenopausal osteoporosis: efficacy and safety after seven years of treatment. Am J Med 1997;103:468–476.

    Article  PubMed  CAS  Google Scholar 

  51. Meunier PJ, Confavreux E, Tupinon I, Hardouin C, Delmas PD, Balena R. Prevention of early postmenopausal bone loss with cyclical etidronate therapy (a double-blind, placebo-controlled study and 1-year follow-up). J Clin Endocrinol Metab 1997;82: 2784–2791.

    Article  PubMed  CAS  Google Scholar 

  52. Wimalawansa SJ. A four-year randomized controlled trial of hormone replacement and bisphosphonate, alone or in combination, in women with postmenopausal osteoporosis. Am J Med 1998;104:219–226.

    Article  PubMed  CAS  Google Scholar 

  53. Struys A, Snelder AA, Mulder H, Mulder H. Cyclical etidronate reverses bone loss of the spine and proximal femur in patients with established corticosteroid-induced osteoporosis. Am J Med 1995;99:235–242.

    Article  PubMed  CAS  Google Scholar 

  54. Adachi JD, Bensen WG, Brown J, Hanley D, Hodsman A, Josse R, et al. Intermittent etidronate therapy to prevent corticosteroid induced osteoporosis. N Engl J Med 1997;337:382–387.

    Article  PubMed  CAS  Google Scholar 

  55. Giannini S, D’Angelo A, Malvasi L, et al. Effects of one-year cyclical treatment with clodronate on postmenopausal bone loss. Bone 1993;14:137–141.

    Article  PubMed  CAS  Google Scholar 

  56. Filipponi P, Cristallini S, Rizzello E, et al. Cyclical intravenous clodronate in postmenopausal osteoporosis: results of a long-term clinical trial. Bone 1996;18:179–184.

    Article  PubMed  CAS  Google Scholar 

  57. Herrala J, Puolijoki H, Lippo K, Raitio M, Impivaara O, Tala E, et al. Clodronate is effective in preventing corticosteroid-induced bone loss among asthmatic patients. Bone 1998;22:577–582.

    Article  PubMed  CAS  Google Scholar 

  58. Reid IR, Wattie DJ, Evans MC, Gamble GD, Stapleton JP, Cornish J. Continuous therapy with Pamidronate, a potent bisphosphonate, in postmenopausal osteoporosis. J Clin Endocrinol Metab 1994;79:1595–1599.

    Article  PubMed  CAS  Google Scholar 

  59. Landman JO, Hamdy NAT, Pauwels EKJ, Papapoulos SE. Skeletal metabolism in patients with osteoporosis after discontinuation of long-term treatment wit oral Pamidronate. J Clin Endocrinol Metab 1995;80:3465–3468.

    Article  PubMed  CAS  Google Scholar 

  60. Lees B, Garland SW, Walton, C, Ross D, Whitehead MI, Stevenson JC. Role of oral Pamidronate in preventing bone loss in postmenopausal women. Osteoporos Int 1996;6:480–485.

    Article  PubMed  CAS  Google Scholar 

  61. Thiébaud D, Burckhardt P, Melchior J, et al. Two years’ effectiveness of intravenous Pamidronate (APD) versus oral fluoride for osteoporosis occurring in the post-menopause. Osteoporos Int 1994;4:76–83.

    Article  PubMed  Google Scholar 

  62. Reid IR, King AR, Alexander CJ, Ibbertson HK. Prevention of steroid-induced osteoporosis with (3-amino-l-hydroxypropylidene)-l,l-bisphosphonate (APD). Lancet 1988;I:143–146.

    Article  Google Scholar 

  63. Reginster JY, Lecart MP, Deroisy R, Sarlet N, Denis D, Ethgen D, et al. Prevention of postmenopausal bone loss by tiludronate. Lancet 1989;II:1469–1471.

    Article  Google Scholar 

  64. Chappard D, Minaire P, Privat C, Bérard E, Mendoza-Sarmiento J, Tournebise H, et al. Effects of tiludronate on bone loss in paraplegic patients. J Bone Miner Res 1995;10:112–118.

    Article  PubMed  CAS  Google Scholar 

  65. Genant HK, Chesnut CH III, Eisman JH, Harris ST, McClung MR, Prince RL, et al. Chronic intermittent cyclic administration of tiludronate in postmenopausal osteoporosis: report of two multicenter studies in 2317 patients. Bone 1998;23(Suppl 5):S175.

    Google Scholar 

  66. Ravn P, Clemmesen B, Riis BJ, Christiansen C. The effect on bone mass and bone markers of different doses of ibandronate: a new bisphosphonate for prevention and treatment of postmenopausal osteoporosis. A 1-year randomized, double-blind, placebo-controlled dose-finding study. Bone 1996;19:527–533.

    Article  PubMed  CAS  Google Scholar 

  67. Thiébaud D, Burckhardt P, Kriegbaum H, Huss H, Mulder H, Juttmann JR, et al. Three monthly intravenous injections of ibandronate in the treatment of postmenopausal osteoporosis. Am J Med 1997;103:298–307.

    Article  PubMed  Google Scholar 

  68. Delmas PD, Balena R, Confravreux E, Hardouin C, Hardy P, Bremond, A. Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind placebo-controlled study. J Clin Oncol 1997;15:955–962.

    PubMed  CAS  Google Scholar 

  69. Mortensen L, Charles P, Bekker PJ, Digennaro J, Johnston CC. Risedronate increases bone mass in an early postmenopausal population: two years of treatment plus one year of follow-up. J Clin Endocrinol Metab 1998;83:396–402.

    Article  PubMed  CAS  Google Scholar 

  70. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner D, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis. JAMA 1999;14:1344–1352.

    Article  Google Scholar 

  71. Adami S, Bhalla AK, Dorizzi R, Montesanti F, Rosini S, Salvagno G, Lo Cascio V. The acute-phase response after bisphosphonate administration. Calcif Tissue Int 1987;41: 326–331.

    Article  PubMed  CAS  Google Scholar 

  72. Peter CP, Cook WO, Nunamaker DM, Provost MT, Seedor JG, Rodan GA. Effect of alendronate on fracture healing and bone remodelling in dogs. J Orthop Res 1996;14:74–79.

    Article  PubMed  CAS  Google Scholar 

  73. Adami S, Zamberlan N. Adverse effects of bisphosphonates. Drug Safety 1996;14: 158–170.

    Article  PubMed  CAS  Google Scholar 

  74. Fleisch H. Bisphosphonates in bone disease. From the laboratory to the patient, 4th edition. San Diego: Academic Press, 2000.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Fleisch, H. (2000). Bisphosphonates. In: Obrant, K. (eds) Management of Fractures in Severely Osteoporotic Bone. Springer, London. https://doi.org/10.1007/978-1-4471-3825-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3825-9_30

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-855-3

  • Online ISBN: 978-1-4471-3825-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics