Skip to main content

Pathogenesis of Osteoporosis

  • Chapter

Abstract

Osteoporosis is defined pathologically as “a systemic disease causing an absolute decrease in the amount of bone and microstructural changes, leading to skeletal fragility and consequent fractures after minimal trauma (low energy fractures)”. The classical osteoporotic fractures affect primarily bones with large amounts of cancellous bone, i.e. spine, hip and forearm. Cancellous bone is metabolically much more active than cortical bone; therefore this phenomenon suggests that perturbations in bone remodelling play a pivotal role in the development of osteoporosis. In this chapter we will re-examine the different factors that may lead to perturbations of bone remodelling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eriksen EF, Mosekilde L, Meisen F. Trabecular bone remodelling and bone balance in hyperthyroidism. Bone 1985;6:421–428.

    Article  PubMed  CAS  Google Scholar 

  2. Langdahl BL, Loft AG, Eriksen EF, Mosekilde L, Charles P. Bone mass, bone turnover, body composition, and calcium homeostasis in former hyperthyroid patients treated by combined medical therapy. Thyroid. 1996;6:161–168.

    PubMed  CAS  Google Scholar 

  3. Masiukiewicz US, Insogna KL. The role of parathyroid hormone in the pathogenesis, prevention and treatment of postmenopausal osteoporosis [in process citation]. Aging (Milano) 1998;10:232–239.

    CAS  Google Scholar 

  4. Halse J, Meisen F, Mosekilde L. Iliac crest bone mass and remodelling in acromegaly. Acta Endocrinol (Copenh) 1981;97:18–22.

    CAS  Google Scholar 

  5. Longobardi S, Di Somma C, Di Rella F, Angelillo N, Ferone D, Colag A, et al. Bone mineral density and circulating cytokines in patients with acromegaly. J Endocrinol Invest 1998;21:688–693.

    PubMed  CAS  Google Scholar 

  6. Bisballe S, Eriksen EF, Meisen F, Mosekilde L, Sorensen OH, Hessov I. Osteopenia and osteomalacia after gastrectomy: interrelations between biochemical markers of bone remodelling, vitamin D metabolites, and bone histomorphometry [see comments]. Gut 1991;32:1303–1307.

    Article  PubMed  CAS  Google Scholar 

  7. Hergenroeder AC. Bone mineralization, hypothalamic amenorrhea, and sex steroid therapy in female adolescents and young adults. J Pediatr 1995;126:683–689.

    Article  PubMed  CAS  Google Scholar 

  8. Mundy GR. Inflammatory mediators and the destruction of bone. J Periodontal Res 1991;26:213–217.

    Article  PubMed  CAS  Google Scholar 

  9. Mundy GR. Local control of osteoclast function. Osteoporos Int 1993;3(Suppl 1):126–127.

    Article  PubMed  Google Scholar 

  10. Chines A, Pacifici R, Avioli LV, Teitelbaum SL, Korenblat PE. Systemic mastocytosis presenting as osteoporosis: a clinical and histomorphometric study. J Clin Endocrinol Metab 1991;72:140–144.

    Article  PubMed  CAS  Google Scholar 

  11. Dempster DW. Bone histomorphometry in glucocorticoid-induced osteoporosis. J Bone Miner Res 1989;4:137–141.

    Article  PubMed  CAS  Google Scholar 

  12. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 1998;102:274–282.

    Article  PubMed  CAS  Google Scholar 

  13. Hurley MM, Kessler M, Gronowicz G, Raisz LG. The interaction of heparin and basic fibroblast growth factor on collagen synthesis in 21-day fetal rat calvariae. Endocrinology 1992;130:2675–2682.

    Article  PubMed  CAS  Google Scholar 

  14. Puleo DA, Bizios R. Mechanisms of fibronectin-mediated attachment of osteoblasts to substrates in vitro. Bone Miner 1992;18:215–226.

    Article  PubMed  CAS  Google Scholar 

  15. Goodman WG. Short-term aluminum administration in the rat: reductions in bone formation without osteomalacia. J Lab Clin Med 1984;103:749–757.

    PubMed  CAS  Google Scholar 

  16. May LG, Gay CV. Multiple G-protein involvement in parathyroid hormone regulation of acid production by osteoclasts. J Cell Biochem 1997;64:161–170.

    Article  PubMed  CAS  Google Scholar 

  17. Daniell HW. Osteoporosis of the slender smoker: vertebral compression fractures and loss of metacarpal cortex in relation to postmenopausal cigarette smoking and lack of obesity. Arch Intern Med. 1976;136:298–304.

    Article  PubMed  CAS  Google Scholar 

  18. Bauer DC, Browner WS, Cauley JA, et al. Factors associated with appendicular bone mass in older women: the Study of Osteoporotic Fractures Research Group [see comments]. Ann Intern Med 1993;118:657–665.

    Article  PubMed  CAS  Google Scholar 

  19. Ensrud KE, Nevitt MC, Yunis C, et al. Correlates of impaired function in older women. J Am Geriatr Soc 1994;42:481–489.

    PubMed  CAS  Google Scholar 

  20. Naves DM, O’Neill TW, Silman AJ. The influence of alcohol consumption on the risk of vertebral deformity. European Vertebral Osteoporosis Study Group. Osteoporos Int 1997;7:65–71.

    Article  Google Scholar 

  21. Johnell O, Gullberg B, Kanis JA, et al. Risk factors for hip fracture in European women: the MEDOS Study. J Bone Miner Res 1995;10:1802–1815.

    Article  PubMed  CAS  Google Scholar 

  22. Nielsen HK, Lundby L, Rasmussen K, Charles P, Hansen C. Alcohol decreases serum osteocalcin in a dose-dependent way in normal subjects. Calcif Tissue Int 1990;46:173–178.

    Article  PubMed  CAS  Google Scholar 

  23. Toussirot E, Royet O, Wendling D. [Aetiologic features of osteoporosis in male patients aged less than 50 years: study of 28 cases with a comparative series of 30 patients over the age of 50]. Rev Med Intern 1998;19:479–485.

    Article  CAS  Google Scholar 

  24. Vanderschueren D, Van HE, De CR, Bouillon R. Aromatization of androgens is important for skeletal maintenance of aged male rats. Calcif Tissue Int 1996;59:179–183.

    Article  PubMed  CAS  Google Scholar 

  25. Riggs BL, Khosla S, Melton LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998;13:763–773.

    Article  PubMed  CAS  Google Scholar 

  26. Anderson FH, Francis RM, Peaston RT, Wastell HJ. Androgen supplementation in eugonadal men with osteoporosis: effects of six months’ treatment on markers of bone formation and resorption. J Bone Miner Res 1997;12:472–478.

    Article  PubMed  CAS  Google Scholar 

  27. Sowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res 1996;11:1052–1060.

    Article  PubMed  CAS  Google Scholar 

  28. Riggs BL, Melton LJ III. Clinical review 8. Clinical heterogeneity of involutional osteoporosis: implications for preventive therapy. J Clin Endocrinol Metab 1990;70: 1229–1232.

    Article  PubMed  CAS  Google Scholar 

  29. Seeman E, Tsalamandris C, Formica C, Hopper JL, McKay J. Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis. J Bone Miner Res 1994;9:739–743.

    Article  PubMed  CAS  Google Scholar 

  30. Kelly PJ, Morrison N, Sambrook PN, Eisman JA. Genetics and osteoporosis: role of the vitamin D receptor gene. Agents Actions 1994;42:i–ii.

    Article  PubMed  CAS  Google Scholar 

  31. Grant SFA, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic SP1 binding site in the collagen type I alpha 1 gene. Nature Genet 1996;14:203–205.

    Article  PubMed  CAS  Google Scholar 

  32. Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF. A sequence variation: 713–8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 1997;20:289–294.

    Article  PubMed  CAS  Google Scholar 

  33. Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 1996;11:306–311.

    Article  PubMed  CAS  Google Scholar 

  34. Uitterlinden AG, Burger H, Huang Q, et al. Relation of alleles of the collagen type I alpha 1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women [see comments]. N Engl J Med 1998;338:1016–1021.

    Article  PubMed  CAS  Google Scholar 

  35. Langdahl BL, Ralston SH, Grant SF, Eriksen EF. An Sp1 binding site polymorphism in the COLIA1 gene predicts osteoporotic fractures in both men and women. J Bone Miner Res 1998;13:1384–1389.

    Article  PubMed  CAS  Google Scholar 

  36. Johnston CC Jr, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992;327:82–87.

    Article  PubMed  Google Scholar 

  37. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998;13:500–507.

    Article  PubMed  CAS  Google Scholar 

  38. Ryan KJ. Estrogen use and postmenopausal women: a National Institutes of Health Consensus Development Conference. Ann Intern Med 1979;91:921–922.

    Article  Google Scholar 

  39. Lindsay R, Hart DM, Forest C, Baird C. Prevention of spinal osteoporosis in oophorec-tomized women. Lancet 1980;II:1151–1154.

    Article  Google Scholar 

  40. Katz E, McClamrock HD, Adashi EY. Ovarian failure including menopause, premature menopause, and resistant ovarian syndrome, and hormonal replacement. Curr Opin Obstet Gynecol 1990;2:392–397.

    PubMed  CAS  Google Scholar 

  41. Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL. Bone formation rate in older normal women: concurrent assessment with bone histomor-phometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab 1988;67:741–748.

    Article  PubMed  CAS  Google Scholar 

  42. Parfitt AM. Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 1984;36(Suppl 1): S123–S128.

    Article  PubMed  Google Scholar 

  43. Eriksen EF. Normal and pathological remodelling of human trabecular bone: three dimensional reconstruction of the remodelling sequence in normals and in metabolic bone disease. Endocr Rev 1986;7:379–408.

    Article  PubMed  CAS  Google Scholar 

  44. Steiniche T, Hasling C, Charles P, Eriksen EF, Mosekilde L, Meisen F. A randomized study on the effects of estrogen/gestagen or high dose oral calcium on trabecular bone remodelling in postmenopausal osteoporosis. Bone 1989;10:313–320.

    Article  PubMed  CAS  Google Scholar 

  45. Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M. Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res 1999;14:1217–1221.

    Article  PubMed  CAS  Google Scholar 

  46. Pacifici R, Rifas L, Teitelbaum S, et al. Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci USA 1987;84:4616–4620.

    Article  PubMed  CAS  Google Scholar 

  47. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL. Estro-genstimulates gene expression and protein production of osteoprotergerin in human osteoblastic cells. Endocrinology 1999;140:4367–4370.

    Article  PubMed  CAS  Google Scholar 

  48. Kotowicz MA, Klee GG, Kao PC, et al. Relationship between serum intact parathyroid hormone concentrations and bone remodelling in type I osteoporosis: evidence that skeletal sensitivity is increased. Osteoporos Int 1990;1:14–22.

    Article  PubMed  CAS  Google Scholar 

  49. Kassem M, Ankersen L, Eriksen E, Clark B, Rattan S. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 1997;7:514–524.

    Article  PubMed  CAS  Google Scholar 

  50. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL. Cancellous bone remodelling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 1990;5:311–319.

    Article  PubMed  CAS  Google Scholar 

  51. Matkovic V, Kostial K, Simonovici L, Buzina R, Broadarec A, Nordin BEC. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 1979;32:540–544.

    PubMed  CAS  Google Scholar 

  52. Lanyon LE. Functional strain as a determinant for bone remodelling. Calcif Tissue Int 1984;36(Suppl 1):S56–S61.

    Article  PubMed  Google Scholar 

  53. Pocock NA, Eisman JA, Yeates MG, Sambrook PN, Eberl S. Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J Clin Invest 1986;78:618–621.

    Article  PubMed  CAS  Google Scholar 

  54. Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 1997;7:331–337.

    Article  PubMed  CAS  Google Scholar 

  55. Glazener CM, Sargood AJ, Jackson PC, et al. Osteoporosis and amenorrhea in young women. Gynecol Endocrinol 1987;1:255–261.

    Article  PubMed  CAS  Google Scholar 

  56. Kiel DF, Felson DT, Anderson JJ, Wilson FWF, Moskowitz MA. Hip fracture and the use of estrogens in postmenopausal women: The Framingham Study. N Engl J Med 1987;317:1169–1174.

    Article  PubMed  CAS  Google Scholar 

  57. Ensrud KE, Cauley J, Lipschutz R, Cummings SR. Weight change and fractures in older women. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997;157:857–863.

    Article  PubMed  CAS  Google Scholar 

  58. Dawson-Hughes B, Harris S, Dallal GE. Serum ionized calcium, as well as phosphorus and parathyroid hormone, is associated with the plasma 1,25-dihydroxyvitamin D3 concentration in normal postmenopausal women. J Bone Miner Res 1991;6:461–468.

    Article  PubMed  CAS  Google Scholar 

  59. Eastell R, Yergey AL, Vieira NE, Cedel SL, Kumar R, Riggs BL. Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J Bone Miner Res 1991;6:125–132.

    Article  PubMed  CAS  Google Scholar 

  60. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 1992;327:1637–1642.

    Article  PubMed  CAS  Google Scholar 

  61. Heaney RP. Estrogen-calcium interactions in the postmenopause: a quantitative description. Bone Miner 1990;11:67–84.

    Article  PubMed  CAS  Google Scholar 

  62. Raisz LG, Pilbeam CC, Fall PM. Prostaglandins: mechanisms of action and regulation of production in bone. Osteoporos Int 1993;3(Suppl 1):136–140.

    Article  PubMed  Google Scholar 

  63. Fukayama S, Tashjian AH Jr. Direct modulation by estradiol of the response of human bone cells (SaOS-2) to human parathyroid hormone (PTH) and PTH-related protein. Endocrinology 1989;124:397–401.

    Article  PubMed  CAS  Google Scholar 

  64. Stevenson JC. Pathogenesis, prevention, and treatment of osteoporosis. Obstet Gynecol 1990;75:36S–41S.

    PubMed  CAS  Google Scholar 

  65. Sorensen OH, Lund B, Andersen RB, et al. Effects of 1-alpha vitamin D on bone and muscle in senile osteopenia. Mol Endocrinol 1979;88:309–318.

    Google Scholar 

  66. Prince RL, Smith M, Dick IM, et al. Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 1991;325:1189–1195

    Article  PubMed  CAS  Google Scholar 

  67. Ho KKY, Evans WS, Blizzard RM. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 1987;64:51–58.

    Article  PubMed  CAS  Google Scholar 

  68. Wuster C, Blum WF, Schlemilch S, Ranke MB, Ziegler R. Decreased serum levels of insulin-like growth factors and IGF binding protein 3 in osteoporosis. J Intern Med 1993;234:249–55

    Article  PubMed  CAS  Google Scholar 

  69. Ljunghall S, Johansson AG, Burman P, Kampe O, Lindh E, Karlsson FA. Low plasma levels of insulin-like growth factor 1 (IGF-1) in male patients with idiopathic osteoporosis. J Intern Med 1992;232:59–64

    Article  PubMed  CAS  Google Scholar 

  70. Kassem M, Brixen K, Blum W, Mosekilde L, Eriksen EF. No evidence for reduced spontaneous or growth-hormone-stimulated serum levels of insulin-like growth factor (IGF)-I, IGF-II or IGF binding protein 3 in women with spinal osteoporosis. Eur J Endocrinol 1994;131:150–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Eriksen, E.F., Glerup, H. (2000). Pathogenesis of Osteoporosis. In: Obrant, K. (eds) Management of Fractures in Severely Osteoporotic Bone. Springer, London. https://doi.org/10.1007/978-1-4471-3825-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3825-9_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-855-3

  • Online ISBN: 978-1-4471-3825-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics