Processes Involving Vaporization, Cooling or Cleaning of Gases

  • G. G. Nasr
  • A. J. Yule
  • L. Bendig


Fire has two faces: one is friendly, it gives light and warmth. It has set in motion the process of civilization. Through its force the human race has developed. But when it gets out of control it shows its other nature. Then fire devours and destroys everything. Its destructive force cannot be subdued. It becomes an incalculable enemy of man. Among historical events, which have shaken the world, there have been disasters like the one in the year 64 in Rome, the Great Fire of London in 1666 and the big bush fires of 1994 in Sydney [1].


Droplet Size Fire Protection Fire Suppression Water Mist Spray Nozzle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brand Katastrophen, Tosa Verlag Wien, 1999.Google Scholar
  2. [2]
    Ungerleider, G.M., Catchpole, D.V. and Hamlin, C.C., Considerations in the phase-out of halon flooding fire extinguishment agents, Proc. 3rd Int. Conf. on Health, Safety and Environment in Oil and Gas Exploration and Production, Part 1, 1996.Google Scholar
  3. [3]
    Warner-Howard, D. and Horsman, G., Safety without halon, Fire Prevention, 277, March 1995.Google Scholar
  4. [4]
    Cote, A.E., Principles of fire protection, Fire Protection Handbook; 16th edn., Quincy, Massachusetts: National Fire Protection Association, US, 1986.Google Scholar
  5. [5]
    Schneider, V., and Hofmann, J., VFDB Zeitschrift Forschung und Technik im Brandschutz, 42, 2, 67–73, 1993.Google Scholar
  6. [6]
    Liu, Z., Kim, A.K. and Su, J.Z., The effect of air convection on the performance of water mist fire suppression systems, AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Vol. 1, ASME 1998Google Scholar
  7. [7]
    NFPA 750 Standard on Water Mist Fire Protection Systems, 2000 Edition.Google Scholar
  8. [8]
    Minimax GmbH, Fine Water Spray Systems, Sonderdruck WS 5 aus dem Schadenmagazin der Albingia Versicherung.Google Scholar
  9. [9]
    Coppalle, A., Fire Protection: Water Curtains, Fire Safety Journal, 241–255, 1993.Google Scholar
  10. [10]
    Ravigururajan, T.S., and Beitran, M.P., A model for attenuation of fire radiation through water drops, Fire Safety Journal, 171–181, 1989.Google Scholar
  11. [11]
    Sprakel, D., Water Mist Fire Extinguishing Systems — A Chance for Safety and Environment, FOGTEC GmbH, Köln 2000.Google Scholar
  12. [12]
    Anon, Water mist — a status update, Fire Prevention 287, March 1996.Google Scholar
  13. [13]
    Dubay, C., The effects of water mist on interior fire fighting, Fire Engineering, Nov. 1996.Google Scholar
  14. [14]
    Reischl, U., Water fog stream heat radiation attenuation, Fire Technology, 15, 4, 262–270, 1979.CrossRefGoogle Scholar
  15. [15]
    Hood, C., Fire protection for cable tunnels, Nuclear Eng. Int., 461, 509, 43, 1996.Google Scholar
  16. [16]
    Bill, R.G., Hansen, R.L. and Richards, K., Fine-spray (water mist) protection of shipboard engine rooms, Fire Safety Journal 29, 317–336, 1997.CrossRefGoogle Scholar
  17. [17]
    Anon, Water mist: the most effective fire fighting solution?, Naval Architect, 20, 1996.Google Scholar
  18. [18]
    Wolfe, J.E., and DeSipio, P.A., Evaluation of fine water mist for applications in naval aircraft fire protection and explosion suppression, FED-Vol. 211, Fluid Measurement and Instrumentation, ASME, 1995.Google Scholar
  19. [19]
    Myung Bae Kim, Yong Jae Jang and Myong O. Yoon, Fire Safety J., 28, 295–306, 1997.CrossRefGoogle Scholar
  20. [20]
    Mawhinney, J.P. and Solomon, R., Water mist fire suppression systems, Proc. Int. Conf. on Water Mist Fire Suppression Systems, Boras, Sweden, Chap. 15, 1993.Google Scholar
  21. [21]
    Arvidson, M., The efficiency of different water mist systems in a ship cabin, Proc. Int. Conf. on Water Mist Fire Suppression Systems, Boras, Sweden, 1993.Google Scholar
  22. [22]
    Anderson, P., Arvidson, M. and Holmstedt, G., Small scale experiment and theoretical aspects of flame extinguishments with water mist, Brandteknik Lunds Tekniska Högskola, Lund Universitet, Dept. of Fire Safety Eng., Report 3080, Lund, Sweden, 1996.Google Scholar
  23. [23]
    Kim, A.K. and Dlugogorski, B.Z., Multipurpose overhead compressed-air foam system and its fire suppression performance, J. Fire Prot. Eng., 8(3), 133–150, 1997.CrossRefGoogle Scholar
  24. [24]
    Holzhauer, R., Steam, atomizing, and evaporative humidification equipment, Plant Engineering, May 27, 1982.Google Scholar
  25. [25]
    Henne, E., Luftbefeuchtung and R. Oldenbourg, Springer Verlag Publisher GmbH, München, 1995.Google Scholar
  26. [26]
    Pickering, C.A.C. and Jones, W.P., Health and hygienic humidification, BSRIA Technical Note 13/86, 1986.Google Scholar
  27. [27]
    Schlüter, P., Luftbefeuchtung und Hygiene, Papier and Kunststoff-Verarbeiter 8/92, 1992.Google Scholar
  28. [28]
    Koch, R., Untersuchungen zum einsatz von Sprühbefeuchtereinheiten in krankenhausklimaanlagen, Luft- und Kältetechnik 1984/1, 1984.Google Scholar
  29. [29]
    Raumluftqualität, Fachartikel zum Thema Verbesserung der Raumluftqualität, Defensor/Axair AG, CH-8808, Pfäffikon SZ, Brochure No. 57.1364 9607.Google Scholar
  30. [30]
    Carroll, B. T., Controlling humidity in the plant, Plant Engineering, 25, 1976Google Scholar
  31. [31]
    Draabe, U., Luftfeuchte hat großen einfluß auf Verarbeitung und produktqualität, Maschinenmarkt, Würzburg, 105, 25, 1999.Google Scholar
  32. [32]
    Holzgen, M., Humidificateurs d’air à vapeur, ETB TUG, 50, 569, 5–12, 1985.Google Scholar
  33. [33]
    Wolk, R.H. and Cohn, A., New power plant cycles utilizing air humidification and turbo machinery, Proc. of the American Power Conf., Illinois Inst. Technology, Chicago, 1004–1009, 1993.Google Scholar
  34. [34]
    Utamura, M., Kuwahara, T., Murata, H. and Horii, N., Effects of intensive evaporative cooling on performance characteristics of land-based gas turbine, Joint Power Gen. Conf., Vol. 2, ASME, 1999.Google Scholar
  35. [35]
    Kaschub, A.L., Industrial humidification, Plant Engineering, April, 19, 1979.Google Scholar
  36. [36]
    DeBat, R.J., Humidity: the great equalizer, HP AC Heating/Piping/Air-Conditioning, Oct, 1996.Google Scholar
  37. [37]
    Uhlmann, S. and Heyde, J., Auslegung und nutzen der polytropen befeuchtung im axialventilator, Luft- und Kältetechnik, 3, 1978.Google Scholar
  38. [38]
    Sohr, R.T., The most precise and clean mode for humidification of space, ASHRAE Transactions, 103, 2, 1997.Google Scholar
  39. [39]
    Draabe, U., Raumluftfeuchte — ein produktionsfaktor, Technik am Bau, 19, 10, 758–760, 1988.Google Scholar
  40. [40]
    Gidwani, B.N., Humidification steam vs. water, Assoc, of Energy Engineers, Atlanta, 313–316, Nov., 1984.Google Scholar
  41. 41]
    [ Schlüter, P., Luftbefeuchtung bei der druck- und papierverarbeitung — notwendigkeit und folgen, Polygraph — Treffpunkt Druckindustrie, 11, 1994.Google Scholar
  42. [42]
    Hoffmann, H., Control and stability of air-conditioning system with variation of water mass-flow in the spray nozzle chamber air humidifier, Proc. XVth Int. Cong, of Refrigeration, Venice, Vol. IV, 1979.Google Scholar
  43. [43]
    Hall, G., Improving laboratory humidity control while minimizing energy consumption, SENSORS, May, 1997.Google Scholar
  44. [44]
    Schaal, G., Function and energy consumption of HVAC systems — method of evaluation, Conf. Article, Springer Verlag, 1983.Google Scholar
  45. [45]
    Optimierung von Luftbefeuchtungskammern mit Lechler Hochleistungs- Exzenterdüsen, Lechler GmbH+Co.KG D-72555 Metzingen, Brochure No. AE/834- D.Google Scholar
  46. [46]
    Amer, M.A., Auslegung und vergleich der leistung von zerstäubungsbefeuchtern, Klima + Kälte-Ingenieur, 10, 1977.Google Scholar
  47. [47]
    Kachhwaha, S.S., Dhar, P.L. and Kale, S.P., Experimental studies and numerical simulation of evaporative cooling of air with a water spray — I. Horizontal parallel flow, Int. J. Heat Mass Transfer, 41, 2, 447–464, 1998.CrossRefGoogle Scholar
  48. [48]
    Kachhwaha, S.S., Dhar, P.L. and Kale, S.P., Experimental studies and numerical simulation of evaporative cooling of air with a water spray — II. Horizontal counter flow, Int. J. Heat Mass Transfer, 41, 2, 465–474, 1998.CrossRefGoogle Scholar
  49. [49]
    Draabe, U., Frische Luft aus dem Sumpf, Der Polygraph, 22, 1871–1874, 1991.Google Scholar
  50. [50]
    Willey, L.J., Jensen, E.P., Adiabatic spray humidification systems in telecommunications facilities, Proc. Int. Telecommunications Energy Conf, 1986.Google Scholar
  51. [51]
    Bahnson, L., TexFog humidity control, Textile Machinery Technology, April, 1996Google Scholar
  52. [52]
    Leisinger, F.M., Humidifiers for the home, Domestic Heating Review, Heat, and Vent. Eng., Nov., 1970.Google Scholar
  53. [53]
    Obier, H., Humidification alternatives for air conditioning, Heating/Piping/Air Conditioning, December, 1982.Google Scholar
  54. [54]
    Lippold, H. and Voigt, J., Ein rotationszerstäuber zur luftbefeuchtung, Luft- und Kältetechnik, 2, 1972.Google Scholar
  55. [55]
    Arora, B.P. and Vitoon, V., Developing clean coal/gas desulphurization option for least cost SO2 control in coal fired power plants, Joint ASME/IEEE Power Generation Conf, Kansas City, Oct., 1993.Google Scholar
  56. [56]
    Winske, P., Operation experience with spray dryers for flue gas desulphurization in german speaking countries, Proc. ASME Joint Int. Power Gen. Conf. Phoenix, Oct., 1994.Google Scholar
  57. [57]
    Mensing, A., Rauchgasreinigung perfektioniert, Chemische Industrie, 4, 1989.Google Scholar
  58. [58]
    Van Bush, P., Advantages of humidification for pollution control, Proc. 57th Annual Power Conf, Parti, April, 1995.Google Scholar
  59. [59]
    Michalski, J.A., The influence of spraying angle on aerodynamic characteristics of FGD spray towers, Chem. Eng. Comm., 165, 17–40, 1998.CrossRefGoogle Scholar
  60. [60]
    Ollero, P., Salvador, L. and Canadas, L., An experimental study of flue gas desulphurization in a pilot spray dryer, Environmental Progress, 16, No. 1.Google Scholar
  61. [61]
    Livengood, D. and Markussen, J.M., FG technologies for combined control of SO2 and NOx.Google Scholar
  62. [62]
    Gleiser, R. and Felsvang, K., Mercury emission reduction using activated carbon with spray dryer flue gas desulphurization, Proc. American Power Conf, 56, 1, 452–457, 1994.Google Scholar
  63. [63]
    Chugthai, M.Y., Linneweber, K.W. and Schmid, C., Direct desulfurization in combination with polishing reactor, Proc. SO2-Control Symposium, New Orleans, 1990.Google Scholar
  64. [64]
    Rappen, A., Morgennebel gegen staub, Chemietechnik, 25, 10, 1996.Google Scholar
  65. [65]
    Brauer, H. and Varma, Y.B.G., Air Pollution Control Equipment, Springer Verlag, 1981.CrossRefGoogle Scholar
  66. [66]
    Kubisa, R. and Pollack, H., Der Entwicklungsstand der hochtemperatur-Verbrennung und rauchgasreinigungstechnik — dargestellt an zwei laufenden bauvorhaben, Chem.- Ing.-Tech., 61, 4, 282–287, 1989.CrossRefGoogle Scholar
  67. [67]
    Menig, H., Emissionsminderung und Recycling, Ecomed Verlagsgesellschaft, 1984.Google Scholar
  68. [68]
    Barg, B., Düsensysteme und tropfenabscheider für eine rauchgasentsch wefelung aus einer hand, Verfahrenstechnik, 11, 1994.Google Scholar
  69. [69]
    Bürkholz, A., Droplet separation, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1989.Google Scholar
  70. [70]
    Bendig, L., Spray nozzles in environmental technology for gas washing, Proc. ILASS-Europe’93, CHISA Conf., Prague, Czech Republic, 1993.Google Scholar
  71. [71]
    Bendig, L., Industrial spray nozzles and their applications, Proc. ICLASS’94, INSA/CORIA, Rouen, France, Begell House NY, 1994.Google Scholar
  72. [72]
    Bendig, L., Wet scrubbers: match the spray, Environmental Eng. World, March/April, 1995.Google Scholar
  73. [73]
    Henri J.T., Medenblik, Sprühsysteme zur gaskonditionierung in verdamp- fungskühlern, Maschinenmarkt, 27, 446–450, 1974.Google Scholar
  74. [74]
    Bartell, W., Ferrazza, J. and Schick, R., Drop size comparisons for flue gas desulfurization, Proc. Int. Power Gen. Conf, San Diego, CA, Oct., 1991.Google Scholar
  75. [75]
    Bendig, L., Droplet size analysis on twin fluid atomisers with external mixture for gas cooling purpose, Proc. ILASS-Europe’90, Univ. Pisa, July, 1990.Google Scholar
  76. [76]
    Bendig, L., Droplet size analysis on twin fluid atomizers with internal mixture and a de-Laval design, Proc. ILASS-Europe’92, Shell, Amsterdam, Oct., 1992.Google Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • G. G. Nasr
    • 1
  • A. J. Yule
    • 2
  • L. Bendig
    • 3
  1. 1.School of Aeronautical, Civil and Mechanical EngineeringUniversity of SalfordSalford, Greater ManchesterUK
  2. 2.Dept. of Mechanical EngineeringUMISTManchesterUK
  3. 3.Lechler GmbH & Co KGMetzingenGermany

Personalised recommendations