Skip to main content

Skeletal Muscle and Peripheral Nerves

  • Chapter
Fetal and Neonatal Pathology

Abstract

Skeletal muscle is a very specialised tissue made up of several different types of muscle fibres. These fibres differ both in their physical properties (speed of contraction, resistance to fatigue) and in the composition of their contractile proteins. Enzyme histochemical studies of oxidative enzymes and of myofibrillar ATPase and immunocytochemical studies using antibodies specific for different myosin isoforms have made it possible to characterise the slow (type I) and fast (type II- with two sub groups IIA and -IIB) contracting muscle fibres at light microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambler MW, Neave C, Singer DB (1984) X-linked recessive myotubular myopathy: II. Muscle morphology and human myogenesis. Human Pathol 15: 1107–1120

    Article  CAS  Google Scholar 

  • Argov Z, Gardner-Medwin D, Johnson MA, Mastaglia FL (1984) Patterns of muscle fiber-type disproportion in hypotonic infants. Arch Neurol 41: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Arthuis M, Pinsard N, Ponsot G (eds) (1990) Neurologie pédiatrique. Flammarion, Paris

    Google Scholar 

  • Banker BQ (1986) Congenital deformities. In: Engel AG, Banker BQ (eds) Myology. McGraw-Hill, New York pp 2109–2159

    Google Scholar 

  • Barbet JP, Kurzenne JY, Butler-Browne GS, Mouly V, Laurent M, Gubler JP (1989) Rhabdomyosarcomes de découverte néonatale. Etude des marqueurs de différentiation musculaire. Ann Pathol (Paris) 9: 363–368

    CAS  Google Scholar 

  • Barbet JP, Thornell L-E, Butler-Browne GS (1991) Immunocytochemical characterisation of two generations of fibres during the development of the human quadriceps muscle. Mech Dev: 3513-3521

    Google Scholar 

  • Barth PG, Van Wijngaarden GH, Bethlem J (1975) X-linked myotubular myopathy with fatal neonatal asphyxia. Neurology 25: 531–536

    Article  PubMed  CAS  Google Scholar 

  • Bethlem J, Arts WF, Dingemans KP (1978) Common origin of rods, cores, miniature cores, and focal loss of cross-striations. Arch Neurol 35: 555–566

    Article  PubMed  CAS  Google Scholar 

  • Billeter R, Weber H, Lutz H, Eppenberger HM, Jenny E (1980) Myosin types in human skeletal muscle fibres. Histochemistry 65: 249–259

    Article  PubMed  CAS  Google Scholar 

  • Bradley WG, Hudgson P, Larson PF, Papapetropoulos TA, Jenkison M (1972) Structural changes in the early stages of Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatr 35: 451–455

    Article  PubMed  CAS  Google Scholar 

  • Brooke MH (1973) Congenital fibre type disproportion. In: Kakulas BA (ed) Clinical studies in myology. Excerpta Medica, Amsterdam, pp 147–159

    Google Scholar 

  • Butler-Browne GS, Whalen RG (1984) Myosin isozymes transitions occurring during post-natal development in the rat soleus muscle. Dev Biol 102: 324–334

    Article  PubMed  CAS  Google Scholar 

  • Butler-Browne GS, Barbet JP, Thornell LE (1990) Myosin heavy and light chain expression during human skeletal muscle development and precocious muscle maturation induced by thyroid hormone. Anat Embryol 181: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Carpenter S, Karpati G, Rothman S, Watters G, Andermann F (1978) Pathological involvement of primary sensory neurons in Werdnig-Hoffmann disease. Acta Neuro-pathol (Berl) 42: 91–97

    Article  CAS  Google Scholar 

  • Carter RL, Jameson CF, Philp ER, Pinkerton CR (1990) Comparative phenotypes in rhabdomyosarcomas and developing skeletal muscle. Histopathology 17: 301–309

    Article  PubMed  CAS  Google Scholar 

  • Colling-Saltin A-S (1978) Enzyme histochemistry on skeletal muscle of the human foetus. J Neurol Sci 39: 169–185

    Article  PubMed  CAS  Google Scholar 

  • Condon K, Silberstein L, Blau HM, Thompson WJ (1990a) Development of muscle fiber types in the prenatal rat hindlimb. Dev Biol 138: 256–274

    Article  PubMed  CAS  Google Scholar 

  • Condon K, Silberstein L, Blau HM, Thompson WJ (1990b) Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Dev Biol 138: 275–295

    Article  PubMed  CAS  Google Scholar 

  • Dehner LP (1987) Pediatric surgical pathology, 2nd edn. Williams Wilkins, Baltimore

    Google Scholar 

  • Donner M, Rapola J, Somer H (1975) Congenital muscular dystrophy: a clinicopathological and follow-up study. Neuropädiatrie 6: 239–258

    Article  PubMed  CAS  Google Scholar 

  • Draeger A, Weeds AG, Fitzsimons RB (1987) Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis. J Neurol Sci 31: 245–259

    Google Scholar 

  • Dubowitz V (1965) Enzyme histochemistry on skeletal muscle. Part II. Developing human muscle. J Neurol Neurosurg Psychiatr 28: 519–524

    CAS  Google Scholar 

  • Dubowitz V (1978) Muscle disorders in childhood. Saunders, London

    Google Scholar 

  • Dubowitz V (1980) The floppy infant, 2nd edn. Heinemann, London

    Google Scholar 

  • Dubowitz V (ed) (1985) Muscle biopsy. A practical approach. Baillière Tindall, London

    Google Scholar 

  • Dyck PJ (1984a) Neuronal atrophy and degeneration predominantly affecting peripheral motor, sensory and autonomic neurons. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds). Peripheral neuropathy. Saunders, Philadelphia, pp 1557–1599

    Google Scholar 

  • Dyck PJ (1984b) Inherited neuronal degeneration and atrophy affecting peripheral motor, sensory, and autonomie neurons. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds) Peripheral neuropathy. Saunders, Philadelphia, pp 1600–1655

    Google Scholar 

  • Ecob-Price M, Hill M, Brown W (1989) Immunocyto-chemical demonstration of myosin heavy chain expression in human muscle. J Neurol Sci 91: 71–78

    Article  Google Scholar 

  • Engel WK (1984) Myasthenia gravis and myasthenic syndromes. Ann Neurol 16: 519–533

    Article  PubMed  CAS  Google Scholar 

  • Engel WK, Gold GN, Karpati G (1968) Type I hypotrophy and central nuclei: a rare congenital muscle abnormality with a possible experimental model. Arch Neurol 18: 435–444

    Article  PubMed  CAS  Google Scholar 

  • Engel WK, Gomez MR, Groover RV (1971) Multicore disease: a recently recognised congenital myopathy associated with multifocal degeneration of muscle fibres. Mayo Clin Proc 46: 666–681

    PubMed  CAS  Google Scholar 

  • Esiri M (1987) Skeletal muscle and peripheral nerves. In: Keeling JW (ed) Fetal and neonatal pathology. Springer-Verlag, Berlin, pp 509–527

    Chapter  Google Scholar 

  • Fardeau M (1992) Congenital myopathies. In: Mastaglia FL, Walton J (eds) Skeletal muscle pathology, 2nd edn. Churchill Livingstone, London, pp 237–281

    Google Scholar 

  • Farkas-Bargeton E, Aicardi J, Fardeau M, Arsenio-Nunes ML, Dreyfus P, Diebler MF (1974) Histochemical and ultrastructural study of muscle biopsies in 3 cases of dystrophia myotonica in the newborn child. J Neurol Sci 21: 273–288

    Article  Google Scholar 

  • Farkas-Bargeton E, Diebler MF, Arsenio-Nunes ML, Wehrle R, Rosenberg B (1977) Etude de la maturation histochimique, quantitative et ultrastructurale du muscle foetal human. J Neurol Sci 31: 245–260

    Article  PubMed  CAS  Google Scholar 

  • Farkas-Bargeton E, Aicardi J, Arsenio-Nunes ML, Wehrle R (1978) Delay in the maturation of muscle fibres in infants with congenital hypotonia. J Neurol Sci 39: 17–29

    Article  PubMed  CAS  Google Scholar 

  • Farkas-Bargeton E, Barbet JP, Dancea S, Wehrle R, Checouri A, Dulac O (1988) Immaturity of muscle fibres in the congenital form of myotonic dystrophy. Its consequences and its origin. J Neurol Sci 83: 145–159

    Article  PubMed  CAS  Google Scholar 

  • Fenichel GM (1966) A histochemical study of developing skeletal muscle. Neurology 16: 741–745

    Article  Google Scholar 

  • Fenichel GM (1978) Clinical syndromes of myasthenia in infancy and childhood. A review. Arch Neurol 35: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Ferreira O, Morvan J, Bernard AM, Verjut JP, Cleophax JP (1989) Maladie de Steinert néonatale. J Gynecol Obstet Biol Reprod 18: 349–354

    CAS  Google Scholar 

  • Fitzsimons RB, Höh JFY (1981) Embryonic and fetal myosins in human skeletal muscle. J Neurol Sci 52: 367–384

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type— clinical, genetic and pathological considerations. Brain Dev 3: 1–29

    Article  PubMed  CAS  Google Scholar 

  • Gherardi R (1989) Pathologie neuro-musculaire. In: Poirier J, Gray F, Escourolle R (eds) Manuel de neuropathologie, 3rd edn. Masson, Paris, pp 204–245

    Google Scholar 

  • Gruner JE, Bargeton E (1952) Lésions thalamiques dans la myatonie du nourrisson. Rev Neurol 86: 236–242

    PubMed  CAS  Google Scholar 

  • Hamilton WJ, Mossman HW (1972) Human embryology, 4th edn. McMillan, London

    Google Scholar 

  • Harper PS (1989) Myotonie dystrophy, 2nd edn. Saunders, London

    Google Scholar 

  • Harper PS, Dyken PR (1972) Early-onset dystrophia myotonica. Evidence supporting a maternal environmental factor. Lancet 2: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Hauschka SD (1974) Clonal analysis of vertebrate myo-genesis. IV. Developmental changes in the muscle colony-forming cells of the human fetal limb. Dev Biol 37: 345–368

    Article  PubMed  CAS  Google Scholar 

  • Heckmatt JZ, Sewry CA, Hodes D, Dubowitz V (1985) Congenital centronuclear (myotubular) myopathy. A clinical, pathological and genetic study in eight children. Brain 108: 941–964

    Article  PubMed  Google Scholar 

  • Johnson MA (1990) Skeletal muscle. In: Filipe MI, Lake BD (eds) Histochemistry in pathology, 2nd edn. Churchill Livingstone, Edinburgh, pp 129–157

    Google Scholar 

  • Korlin IS (1967) Nemaline myopathy. A fatal case. Am J Dis Child 114: 95–100

    Google Scholar 

  • Kumagai T, Hakamada S, et al. (1984) Development of human fetal muscles: a comparative histochemical analysis of the psoas and the quadriceps muscle. Neuropediatrics 15: 198–202

    Article  PubMed  CAS  Google Scholar 

  • Lake BD (1991) Skeletal musculature. In: Wigglesworth JS, Singer BD (eds) Textbook of fetal and perinatal pathology. Blackwell, Oxford, pp 1221–1246

    Google Scholar 

  • Lyon G (1969) Ultrastructural study of a nerve biopsy from a case of early infantile chronic neuropathy. Acta Neuropathol 13: 131–142

    Article  PubMed  CAS  Google Scholar 

  • Lyons GE, Haselgrove J, Kelly AM, Rubinstein NA (1983) Myosin transitions in developing fast and slow muscles in the rat hind limb. Differentiation 25: 168–175

    Article  PubMed  CAS  Google Scholar 

  • MacMenamin JB, Becker LE, Murphy EG (1982) Congenital muscular dystrophy: a clinicopathologic report of 24 cases. J Pediatr 100: 692–697

    Article  Google Scholar 

  • Miller JB (1991) Myoblasts, myosins, MyoDs, and the diversification of muscle fibers. Neuromusc Dis 1: 7–17

    Article  PubMed  CAS  Google Scholar 

  • Molenaar WM, Oosterhuis JW, Oosterhuis AM, Ramakaers FCS (1984) Mesenchymal and muscle-specific intermediate filaments (vimentin and desmin) in relation to differentiation in childhood rhabdomyosarcomas. Human Pathol 16: 838–843

    Article  Google Scholar 

  • Moore GE, Hurko O, Walsh FS (1984) Immunocytochemical analysis of fibre type differentiation in developing skeletal muscle. J Neuroimmunol 7: 137–149

    Article  PubMed  CAS  Google Scholar 

  • Mouly V, Lemonnier M, Libri D, Gros F, Fiszman MY (1990) Transformation and cloning of different types of myoblasts during avian development. In: Pette D (ed) The dynamic state of muscle fibre. W Gruyter, Berlin, pp 651–665

    Google Scholar 

  • Murayama S, Boudin TW, Suzuki K (1991) Immunocytochemical and ultrastructural studies of Werdnig-Hoffmann disease. Acta Neuropathol (Berl) 81: 408–417

    Article  CAS  Google Scholar 

  • Nonaka I, Koga Y, Okino E, Kikuchi A, Fujisawa K, Miyabayshi S (1988) Defects in muscle fibre growth in fatal infantile cytochrome-C oxidase deficiency. Brain Dev 10: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Patel K, Voigt T, Dunn MJ, Strong PN, Dubowitz V (1988) Dystrophin and nebulin in the muscular dystrophies. J Neurol Sci 87: 315–326

    Article  PubMed  CAS  Google Scholar 

  • Periasamy M, Wieczorek DF, Nadal-Ginard B (1985) Characterisation of a developmentally regulated perinatal myosin heavy chain expressed in skeletal muscle. J Biol Chem 259: 13573–13578

    Google Scholar 

  • Poirier J, Gray F, Escourolle R (eds) (1989) Manuel de neuropathologie, 3rd edn. Masson, Paris

    Google Scholar 

  • Pons F, Léger JOC, Chevallay M, Tomé FMS, Fardeau M, Léger J-J (1986) Immunocytochemical analysis of myosin heavy chains in human fetal muscles. J Neurol Sci 76: 151–163

    Article  PubMed  CAS  Google Scholar 

  • Ringqvist M, Ringqvist I, Thorneil L-E (1977) Differentiation of fibres in human masseter, temporal and biceps brachii muscles. J Neurol Sci 32: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Sahgal VS, Bernes S, Sahgal S, Lischwey C, Subramani V (1983) Skeletal muscle in preterm infants with congenital myotonic dystrophy. Morphologie and histochemical study. J Neurol Sci 59: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Santavuori P, Leisti J, Kruss S (1977) Muscle, eye and brain disease: a new syndrome. Neuropädiatrie 8: 550–553

    Google Scholar 

  • Sarnat SB, Silbert SW (1976) Maturational arrest of fetal muscle in neonatal myotonic dystrophy. Arch Neurol 33: 466–474

    Article  PubMed  CAS  Google Scholar 

  • Sawchak JA, Benoff B, Sher JH, Shafiq SA (1990) Werdnig-Hoffmann disease: myosin isoform expression not arrested at prenatal stage of development. J Neurol Sci 95: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Schmalbruch H, Kamieniecka Z, Arrøe M (1987) Early fatal nemaline myopathy: case report and review. Dev Med Child Neurol 29: 800–804

    Article  PubMed  CAS  Google Scholar 

  • Schochet SS (1986) Diagnostic pathology of skeletal muscle and nerve. Appleton, Norwalk

    Google Scholar 

  • Sewry CA (1985) Ultrastructural changes in diseased muscle. In: Dubowitz V (ed) Muscle biopsy. A practical approach. Baillière Tindall, London, pp 129–183

    Google Scholar 

  • Sewry CA (1989) Contribution of immunocytochemistry to the pathogenesis of spinal muscular atrophy. In: Merlini L, Granata C, Dubowitz V (eds) Current concepts in childhood spinal muscular atrophy. A Gaggi, Bologna, pp 57–68

    Google Scholar 

  • Sher JH, Rimalovski AB, Athanassiades TJ, Aronson SM (1967) Familial centronuclear myopathy: a clinical and pathological study. Neurology 17: 727–742

    Article  PubMed  CAS  Google Scholar 

  • Shevell M, Rosenblatt B, Silver K, Carpenter S, Karpati G (1990) Congenital inflammatory myopathy. Neurology 40: 1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Shinomura C, Nonaka I (1989) Nemaline myopathy: comparative muscle histochemistry in the severe neonatal, moderate congenital, and adult-onset forms. Pediatr Neurol 5: 25–31

    Article  Google Scholar 

  • Shy GM, Magee KR (1956) A new congenital non-progressive myopathy. Brain 79: 610–620

    Article  PubMed  CAS  Google Scholar 

  • Shy GM, Engel WK, Somers JE, Warko T (1963) Nemaline myopathy: a new congenital myopathy. Brain 86: 793–810

    Article  PubMed  CAS  Google Scholar 

  • Spiro AJ, Shy GM, Gonatas NK (1966) Myotubular myopathy: persistence of fetal muscle in an adolescent boy. Arch Neurol 14: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, Miller JB (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol 123: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Takada K, Nakamura H, Tanaka J (1984) Cortical dysplasia in congenital muscular dystrophy with central nervous system involvement (Fukuyama type). J Neuropathol Exp Neurol 43: 395–407

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Nonaka I (1987) Congenital myotonic dystrophy. Changes in muscle pathology with ageing. J Neurol Sci 77: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Thompson CE (1982) Infantile myositis. Dev Med Child Neurol 24: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Thornell L-E, Billeter R, Butler-Browne GS, Eriksson P-O, Ringqvist M, Whalen RG (1984) Development of fibre types in human fetal muscle. An immunocytochemical study. J Neurol Sci 66: 107–115

    Article  PubMed  CAS  Google Scholar 

  • Vanier TM (1960) Dystrophia myotonica in childhood. Br Med J ii: 1284–1288

    Article  Google Scholar 

  • Van Wijngaarden GK, Fleury P, Bethlem J, Meijer AEFH (1969) Familial “myotubular” myopathy. Neurology 19: 901–908

    Article  PubMed  Google Scholar 

  • Vivarelli E, Brown WE, Whalen RG, Cossu G (1988) The expression of slow myosin during mammalian somito-genesis and limb bud differentiation. J Cell Biol 107: 2191–2197

    Article  PubMed  CAS  Google Scholar 

  • Walton JN (1956) Amyotonia congenita: a follow-up study. Lancet i: 1023–1028

    Article  Google Scholar 

  • Whalen RG, Sell SM, Butler-Browne GS, Schwartz K, Bouveret P, Pinset-Harmström I (1981) Three myosin heavy chains appear sequentially in rat muscle development. Nature 292: 805–809

    Article  PubMed  CAS  Google Scholar 

  • Whalen RG, Butler-Browne GS, Bugaiski LB, Harris JB, Herlicoviez D (1985) Myosin isozyme expression in developing and regenerating rat muscle. In: Strohman RC, Wolf S (eds) Gene expression in muscle. Adv Exp Med Biol 182: 193-199

    Google Scholar 

  • Wohlfart G (1937) Über das Vorkommen verscheidener Arten von Muskelfasern in der Skelettmuskulatur der Menschen und einiger Säugetiere. Acta Psychiatr Neurol Scand 12 suppl: 1–119

    Article  Google Scholar 

  • Yamaguchi M, Robson RM, Stromer MH, Dahl DS, Oda T (1978) Actin filaments form the backbone of nemaline myopathy rods. Nature 271: 265–267

    Article  PubMed  CAS  Google Scholar 

  • Zellweger H, Afifi A, McCormick WF, Mergner W (1967) Severe congenital muscular dystrophy. Am J Dis Child 114: 591–602

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London

About this chapter

Cite this chapter

Barbet, J.P. (1993). Skeletal Muscle and Peripheral Nerves. In: Keeling, J.W. (eds) Fetal and Neonatal Pathology. Springer, London. https://doi.org/10.1007/978-1-4471-3802-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3802-0_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3804-4

  • Online ISBN: 978-1-4471-3802-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics