Advertisement

System Identification Using Frequency Response Techniques with Optimal Spectral Resolution

  • Gennady G. Kulikov
  • Haydn A. Thompson
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter describes an approach to the problem of dynamic model identification of aero engines using frequency response techniques. A problem with frequency response identification is obtaining an optimal spectral resolution. A visual-analysis-based optimization technique for identification is proposed providing a compromise between the bias and variance of the spectral estimate. The accuracy of the identification is provided by the optimal choice of spectral resolution using a priori information about the engine dynamic model.

Keywords

Window Size Frequency Response Function Spectral Estimate Record Length Spectral Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kulikov GG. Mathematical modelling of a gas turbine engine as a multi-variable plant. In: Shevyakov AA, Martyanova TS, editors. Optimisation of Multivariable Control Systems of Aero Gas Turbine Engines. (In Russian). Moscow: Mashinostroenie, 1989; 30–88.Google Scholar
  2. 2.
    Eykhoff P. System Identification: Parameter and State Estimation. London: Wiley-Interscience, 1974.Google Scholar
  3. 3.
    Söderström T, Stoica P. System Identification. Englewood Cliffs, NJ: Prentice-Hall, 1989.zbMATHGoogle Scholar
  4. 4.
    Ljung L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall, 1987.zbMATHGoogle Scholar
  5. 5.
    Otnes RK, Enochson L. Applied Time Series Analysis: Basic Techniques. New York: Wiley-Interscience, 1978.zbMATHGoogle Scholar
  6. 6.
    Marple L. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.Google Scholar
  7. 7.
    Bendat J, Piersol A. Random Data: Analysis and Measurement Procedures. New York: Wiley, 1986.zbMATHGoogle Scholar
  8. 8.
    Ljung L, Glad T. Modeling of Dynamic Systems. Englewood Cliffs, NJ: Prentice-Hall, 1994.zbMATHGoogle Scholar
  9. 9.
    Ljung L. System Identification Toolbox for Use with MATLAB: User’s Manual. Natick, MA: MathWorks, Inc., 1991.Google Scholar
  10. 10.
    Kollár I. Frequency-Domain System Identification Toolbox for Use with MATLAB: User’s Manual. Natick, MA: MathWorks, Inc., 1994.Google Scholar
  11. 11.
    Patel VC, Kadirkamanathan V, Kulikov GG, Arkov VYu and Breikin TV. Gas turbine engine condition monitoring using statistical and neural network methods. In: Proc. IEE Colloquium on Modelling and Signal Processing for Fault Diagnosis. Paper 1996/260, 1996; 1–6.CrossRefGoogle Scholar
  12. 12.
    Kulikov GG, Arkov VY, Breikin TV. On condition monitoring of FADEC information channels. Russian Aeronautics, 1995;4:81–85.Google Scholar
  13. 13.
    Ivashenko NN. Automatic Control: Theory and Elements of Systems, (in Russian). Moscow: Mashinostroenie, 1978.Google Scholar
  14. 14.
    The Encyclopedia of Cybernetics, (in Russian). USE, Kiev, 1975; v.1.Google Scholar
  15. 15.
    Lotosh MM, Shuster AL. Basics of Automatic Control Theory: Mathematical Methods, (in Russian). Moscow: Nauka, 1992.Google Scholar
  16. 16.
    Livshits NA, Pugatchev VN. Probabilistic Analysis of Automatic Control Systems, (in Russian). Moscow: Sovetskoe radio, 1963.Google Scholar
  17. 17.
    Gubarev VV. Probabilistic Models: Reference Book, (in Russian). Novosibirsk: NETU, 1992.Google Scholar
  18. 18.
    Peterson EL. Statistical Analysis and Optimisation of Systems. New York: John Wiley & Sons, 1961.Google Scholar
  19. 19.
    Cooper G, McGillem C. Probabilistic Methods of Signal and System Analysis. New York: Holt, Rinehart & Winston, 1986.Google Scholar
  20. 20.
    Isermann R. Digital Control Systems. New York: Springer-Verlag, 1981.CrossRefzbMATHGoogle Scholar
  21. 21.
    Arkov V, Kulikov G. Gas turbine engine frequency response function identification using spectral methods: Optimisation approach, In: Rahnejat H, Whalley R, editors. Multibody Dynamics: Monitoring and Simulation Techniques. London: Mechanical Engineering Publications, 1997; 123–131.Google Scholar
  22. 22.
    Arkov VY, Kulikov GG. Dynamic model identification using spectral analysis: optimisation approach. In: Proc. IEEE Singapore Int. Symp. on Control Theory and Applications, 1997 ; 415–418Google Scholar
  23. 23.
    Arkov V, Evans DC, Fleming PJ, Hill DC, Norton JP, Pratt I, Rees D, Rodriguez-Vazquez K. System identification strategies applied to aircraft gas turbine engines. In: Proc. 14th Triennal IF AC World Congress, 1999; 145–152.Google Scholar
  24. 24.
    Graps AL. An introduction to wavelets. IEEE Trans on Computational Sciences and Engineering, 1995;2;2:50–61.CrossRefGoogle Scholar
  25. 25.
    Jiang Q. Orthogonal multiwavelets with optimum time-frequency resolution. IEEE Trans, on Signal Processing, 1998;46;4:830–844.CrossRefGoogle Scholar
  26. 26.
    Warden AT, Percival DB, McCoy EJ. Spectrum estimation by wavelet thresholding of multitaper estimators. IEEE Trans, on Signal Processing, 1998;46;12:3153–3165.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Gennady G. Kulikov
    • 1
  • Haydn A. Thompson
    • 2
  1. 1.Department of Automated Control SystemsUfa State Aviation Technical UniversityRussia
  2. 2.Department of Automatic Control and Systems EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations