In Vitro Regulation of Osteoblast Activity

  • Norman J. Karin
  • Mary C. Farach-Carson
Part of the Topics in Bone Biology book series (TBB, volume 1)


As every cell biologist should know, the validity of experimentally derived conclusions may not go beyond the test system. Often the experimental model proposed for testing is either fundamentally flawed or unproven. This issue is particularly critical for the bone biologist, where the differences between the in vivo and in vitro environment of the bone cell are often profound. The extracellular matrix (ECM) surrounding the bone cell is highly specialized, be it a stromal cell in the marrow cavity, an osteoblast involved in bone formation, or an osteoclast engaged in bone resorption. An impressive body of literature has accumulated in the past two decades clearly establishing the role of the ECM in guiding cell phenotype and activity [10, 247]. For the bone cell, the ECM is one of the most highly specialized milieus in existence [69, 76]. In addition to being made up of collagenous and non-collagenous proteins, the bone ECM is one of the few milieus that normally is mineralized in a precisely regulated manner. Efforts to recreate this cellular microenvironment in vitro have been many, but success remains limited. Most of what we have learned about bone cell function in vitro has come from models that are acknowledged to be less than ideal. In this review, we will describe the conventional models used for the study of bone cell activity in vitro, discuss the strengths and limitations of each, and then review the progress that has been made in understanding bone cell function based on these model systems. We will focus upon the osteoblast, but many issues apply equally to the study of other cell types found in native bone.


Bone Resorption Osteoblastic Cell Organ Culture System Osteoblastlike Cell Prostaglandin Leukot Essent Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz J, Gonzalez JM, Rouse D, Suki WN (1995) Differential expression of plasma membrane calcium pump mRNA isoforms in rat osteoblast-like cells. Miner Electrolyte Metab 21: 367–74.PubMedGoogle Scholar
  2. 2.
    Adebanjo OA, Biswas G, Moonga BS, Anandatheerthavarada HK, Sun L, Bevis PJ, et al. (2000) Novel biochemical and functional insights into nuclear Ca’`* transport through IP3Rs and RyRs in osteoblasts. Am J Physiol Renal Physiol 278: 784–91.Google Scholar
  3. 3.
    Ahmad M, McCarthy MB, Gronowicz G (1999) An in vitro model for mineralization of human osteoblast-like cells on implant materials. Biomaterials 20: 211–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Akisaka T, Yamamoto T, Gay CV (1988) Ultracytochemical investigation of calcium-activated adenosine triphosphatase ( Ca“-ATPase) in chick tibia. J Bone Miner Res 3: 19–25.Google Scholar
  5. 5.
    Alam AS, Moonga BS, Bevis PJ, Huang CL, Zaidi M (1993) Amylin inhibits bone resorption by a direct effect on the motility of rat osteoclasts. Exp Physiol 78: 183–96.PubMedGoogle Scholar
  6. 6.
    Amagai Y, Iijima M, Kasai S (1983) Development of excitability during the in vitro differentiation of a newly established myogenic cell line. Jpn J Physiol 33: 547–57.PubMedCrossRefGoogle Scholar
  7. 7.
    An S, Goetzl EJ, Lee H (1998) Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. J Cell Biochem Suppl 30 /31: 147–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson RE, Kemp JW, Jee WS, Woodbury DM (1984) Ion-transporting ATPases and matrix mineralization in cultured osteoblastlike cells. In Vitro 20: 837–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Asahina I, Sampath TK, Nishimura I, Hauschka PV (1993) Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J Cell Biol 123: 921–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Aszodi A, Bateman JF, Gustafsson E, Boot-Handford R, Fassler R (2000) Mammalian skeletogenesis and extra-cellular matrix: what can we learn from knockout mice? Cell Struct Funct 25: 73–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Aubin JE, Bonnelye E (2000) Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int 11: 905–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Azuma Y, Sato H, Oue Y, Okabe K, Ohta T, Tsuchimoto M, et al. (1995) Alendronate distributed on bone surfaces inhibits osteoclastic bone resorption in vitro and in experimental hypercalcemia models. Bone 16: 235–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Baba TT (2000) Restoration of mineral depositions by dexamethasone in the matrix of nonmineralizing osteoblastic cells subcloned from MC3T3–E1 cells. Calcif Tissue Int 67: 416–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Bailon-Plaza A, van der Meulen MC (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212: 191–209.PubMedCrossRefGoogle Scholar
  15. 15.
    Barnard R, Ng KW, Martin TJ, Waters MJ (1991) Growth hormone ( GH) receptors in clonal osteoblast-like cells mediate a mitogenic response to GH. Endocrinology 128: 1459–64.Google Scholar
  16. 16.
    Beck GR, Jr, Zerler B, Moran E (2001) Gene array analysis of osteoblast differentiation. Cell Growth Differ 12: 61–83.PubMedGoogle Scholar
  17. 17.
    Bellido T, Huening M, Raval-Pandya M, Manolagas SC, Christakos S (2000) Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J Biol Chem 275: 26328–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Bellows CG, Aubin JE, Heersche JN, Antosz ME (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 38: 143–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Benayahu D (1997) Estrogen effects on protein expressed by marrow stromal osteoblasts. Biochem Biophys Res Commun 233: 30–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Benayahu D, Kletter Y, Zipori D, Wientroub S (1989) Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol 140: 1–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Billiau A, Edy VG, Heremans H, Van Damme J, Desmyter J, Georgiades JA, et al. (1977) Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother 12: 11–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Binderman I, Duksin D, Harell A, Katzir E, Sachs L (1974) Formation of bone tissue in culture from isolated bone cells. J Cell Biol 61: 427–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Bodine PV, Henderson RA, Green J, Aronow M, Owen T, Stein GS, et al. (1998) Estrogen receptor-alpha is developmentally regulated during osteoblast differentiation and contributes to selective responsiveness of gene expression. Endocrinology 139: 2048–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Bodine PV, Komm BS (2002) Tissue culture models for studies of hormone and vitamin action in bone cells. Vitam Horm 64: 101–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Bonewald LF (1999) Establishment and characterization of an osteocyte-like cell line, MLO-Y4. J Bone Miner Metab 17: 61–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Bootman MD, Lipp P, Berridge MJ (2001) The organisation and functions of local Cat signals. J Cell Sci 114: 2213–22.PubMedGoogle Scholar
  27. 27.
    Boyan BD, Schwartz Z, Swain LD, Bonewald LF, Khare A (1989) Regulation of matrix vesicle metabolism by vitamin D metabolites. Connect Tissue Res, 22 53: 3–16.PubMedGoogle Scholar
  28. 28.
    Bradford PG, Maglich JM, Ponticelli AS, Kirkwood KL (2000) The effect of bone morphogenetic protein-7 on the expression of type I inositol 1,4,5-trisphosphate receptor in G-292 osteosarcoma cells and primary osteoblast cultures. Arch Oral Biol 45: 159–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop S68–83.Google Scholar
  30. 30.
    Buckley MJ, Banes AJ, Levin LG, Sumpio BE, Sato M, Jordan R, et al. (1988) Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner 4: 225–36.PubMedGoogle Scholar
  31. 31.
    Burger EH, Klein-Nulen J (1999) Responses of bone cells to biomechanical forces in vitro. Adv Dent Res 13: 93–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Caffrey JM, Farach-Carson MC (1989) Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. J Biol Chem 264: 20265–74.PubMedGoogle Scholar
  33. 33.
    Caplan Al, Reuben D, Haynesworth SE (1998) Cell-based tissue engineering therapies: the influence of whole body physiology. Adv Drug Deliv Rev 33: 3–14.CrossRefGoogle Scholar
  34. 34.
    Carpio LC, Stephan E, Kamer A, Dziak R (1999) Sphingolipids stimulate cell growth via MAP kinase activation in osteoblastic cells. Prostaglandins Leukot Essent Fatty Acids 61: 267–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Casser-Bette M, Murray AB, Closs EI, Erfle V, Schmidt J (1990) Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif Tissue Int 46: 46–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Caverzasio J, Palmer G, Suzuki A, Bonjour JP (2000) Evidence for the involvement of two pathways in activation of extracellular signal-regulated kinase ( Erk) and cell proliferation by Gi and Gq protein-coupled receptors in osteoblast-like cells. J Bone Miner Res 15: 1697–706.Google Scholar
  37. 37.
    Chae HJ, Chae SW, Weon KH, Kang JS, Kim HR (1999) Signal transduction of thapsigargin-induced apoptosis in osteoblasts. Bone 25: 453–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen HL, Demiralp B, Schneider A, Koh AJ, Silve C, Wang CY, et al. (2002) Parathyroid hormone and parathyroid hormone-related protein exert both pro-and anti-apoptotic effects in mesenchymal cells. J Biol Chem 277: 19374–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen TL, Cone CM, Feldman D (1983) Effects of 1 alpha,25-dihydroxyvitamin D3 and glucocorticoids on the growth of rat and mouse osteoblast-like bone cells. Calcif Tissue Int 35: 806–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen TL, Hauschka PV, Cabrales S, Feldman D (1986) The effects of 1,25-dihydroxyvitamin D3 and dexamethasone on rat osteoblast-like primary cell cultures: receptor occupancy and functional expression patterns for three different bioresponses. Endocrinology 118: 250–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Chiba H, Sawada N, Ono T, Ishii S, Mori M (1993) Establishment and characterization of a simian virus 40-immortalized osteoblastic cell line from normal human bone. Jpn J Cancer Res 84: 290–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Choi EM, Suh KS, Kim YS, Choue RW, Koo SJ (2001) Soybean ethanol extract increases the function of osteoblastic MC3T3–E1 cells. Phytochemistry 56: 733–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Civitelli R, Reid IR, Westbrook S, Avioli LV, Hruska KA (1988) PTH elevates inositol polyphosphates and diacylglycerol in a rat osteoblast-like cell line. Am J Physiol 255: E660–7.PubMedGoogle Scholar
  44. 44.
    Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181: 67–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Cooper LF, Tiffee JC, Griffin JP, Hamano H, Guo Z (2000) Estrogen-induced resistance to osteoblast apoptosis is associated with increased hsp27 expression. J Cell Physiol 185: 401–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Damsky CH (1999) Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone 25: 95–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Delvin EE, Richard P, Desbarats M, Ecarot-Charrier B, Glorieux FH (1990) Cultured osteoblasts from normal and hypophosphatemic mice: calcitriol receptors and biological response to the hormone. Bone 11: 87–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Dempster DW, Moonga BS, Stein LS, Horbert WR, Antakly T (1997) Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol 154: 397–406.PubMedCrossRefGoogle Scholar
  49. 49.
    Divieti P, Lanske B, Kronenberg HM, Bringhurst FR (1998) Conditionally immortalized murine osteoblasts lacking the type 1 PTH/PTHrP receptor. J Bone Miner Res 13: 1835–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Doll B, Sfeir C, Winn S, Huard J, Hollinger J (2001) Critical aspects of tissue-engineered therapy for bone regeneration. Crit Rev Eukaryot Gene Expr 11: 173–98.PubMedCrossRefGoogle Scholar
  51. 51.
    Duncan R, Mister S (1989) Voltage-activated and stretch-activated Ba“ conducting channels in an osteoblast-like cell line (UMR 106). FEBS Lett 251: 17–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Duncan RL (1995) Transduction of mechanical strain in bone ASGSB Bull 8: 49–62.Google Scholar
  53. 53.
    Duncan RL, Akanbi KA, Farach-Carson MC (1998) Calcium signals and calcium channels in osteoblastic cells. Semin Nephrol 18: 178–90.PubMedGoogle Scholar
  54. 54.
    Duncan RL, Kizer N, Barry EL, Friedman PA, Hruska KA (1996) Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc Natl Acad Sci U S A 93: 1864–9.PubMedCrossRefGoogle Scholar
  55. 55.
    East JM (2000) Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/function and biology. Mol Membr Biol 17: 189–200.PubMedCrossRefGoogle Scholar
  56. 56.
    Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH (1993) The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 291: 677–80.PubMedGoogle Scholar
  57. 57.
    Eilon G, Perkins J, Viola MV (1983) Characteristics of a calcitonin-responsive cell line derived from a human osteosarcoma. Cancer Res 43: 3763–9.PubMedGoogle Scholar
  58. 58.
    Eilon G, Raisz LG (1978) Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture. Endocrinology 103: 1969–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Farach-Carson MC, Ridall AL (1998) Dual 1,25dihydroxyvitamin D3 signal response pathways in osteoblasts: cross-talk between genomic and membrane-initiated pathways. Am J Kidney Dis 31: 729–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Farach-Carson MC, Xu Y (2002) Microarray detection of gene expression changes induced by 1,25(OH)2D3 and a Ca’ influx-activating analog in osteoblastic ROS 17/2.8 cells. Steroids 67: 467–70.PubMedCrossRefGoogle Scholar
  61. 61.
    Felix R, Cecchini MG, Hofstetter W, Guenther HL, Fleisch H (1991) Production of granulocyte-macrophage (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) by rat clonal osteoblastic cell population CRP 10/30 and the immortalized cell line IRC10/30-mycl stimulated by tumor necrosis factor alpha. Endocrinology 128: 661–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Festuccia C, Teti A, Bianco P, Guerra F, Vicentini C, Tennina R, et al. (1997) Human prostatic tumor cells in culture produce growth and differentiation factors active on osteoblasts: a new biological and clinical parameter for prostatic carcinoma. Oncol Res 9: 419–31.PubMedGoogle Scholar
  63. 63.
    Flanagan AM, Chambers TJ (1991) Inhibition of bone resorption by bisphosphonates: interactions between bisphosphonates, osteoclasts, and bone. Calcif Tissue Int 49: 407–15.PubMedCrossRefGoogle Scholar
  64. 64.
    Flour MP, Ronot X, Vincent F, Benoit B, Adolphe M (1992) Differential temperature sensitivity of cultured cells from cartilaginous or bone origin. Biol Cell 75: 83–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59: 221–6.PubMedGoogle Scholar
  66. 66.
    Fornoni A, Cornacchia F, Howard GA, Roos BA, Striker GE, Striker LJ (2001) Cyclosporin A affects extracellular matrix synthesis and degradation by mouse MC3T3–E1 osteoblasts in vitro. Nephrol Dial Transplant 16: 500–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Fournier B, Price PA (1991) Characterization of a new human osteosarcoma cell line OHS-4. J Cell Biol 114: 577–83.PubMedCrossRefGoogle Scholar
  68. 68.
    Franceschi RT (1999) The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Grit Rev Oral Biol Med 10: 40–57.CrossRefGoogle Scholar
  69. 69.
    Franceschi RT, Iyer BS (1992) Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3–E1 cells. J Bone Miner Res 7: 235–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Franceschi RT, Iyer BS, Cui Y (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3–E1 cells. J Bone Miner Res 9: 843–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Freitas F, Jeschke M, Majstorovic I, Mueller DR, Schindler P, Voshol H, et al. (2002) Fluoroaluminate stimulates phosphorylation of p130 Cas and Fak and increases attachment and spreading of preosteoblastic MC3T3–E1 cells. Bone 30: 99–108.PubMedCrossRefGoogle Scholar
  72. 72.
    Frosch KH, Barvencik F, Lohmann CH, Viereck V, Siggelkow H, Breme J, et al. (2002) Migration, matrix production and lamellar bone formation of human osteoblast-like cells in porous titanium implants. Cells Tissues Organs 170: 214–27.PubMedCrossRefGoogle Scholar
  73. 73.
    Fukayama S, Tashjian AH Jr, Bringhurst FR (1993) Role of protein kinase A in the regulation of cytosolic free calcium in human osteoblast-like SaOS-2 cells. Am J Physiol 264: C464–70.PubMedGoogle Scholar
  74. 74.
    Gartland A, Hipskind RA, Gallagher JA, Bowler WB (2001) Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 16: 846–56.PubMedCrossRefGoogle Scholar
  75. 75.
    Gattei V, Aldinucci D, Quinn JM, Degan M, Cozzi M, Perin V, et al. (1996) Human osteoclasts and preosteoclast cells (FLG 29.1) express functional c-kit receptors and interact with osteoblast and stromal cells via membrane-bound stem cell factor. Cell Growth Differ 7: 753–63.PubMedGoogle Scholar
  76. 76.
    Gerstenfeld LC, Uporova T, Schmidt J, Strauss PG, Shih SD, Huang LF, et al. (1996) Osteogenic potential of murine osteosarcoma cells: comparison of bone-specific gene expression in in vitro and in vivo conditions. Lab Invest 74: 895–906.PubMedGoogle Scholar
  77. 77.
    Ghosh TK, Bian J, Gill DL (1994) Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem 269: 22628–35.PubMedGoogle Scholar
  78. 78.
    Ghosh-Choudhury N, Windle JJ, Koop BA, Harris MA, Guerrero DL, Wozney JM, et al. (1996) Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice. Endocrinology 137: 331–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Glantschnig H, Varga F, Klaushofer K (1996) The cellular protooncogenes c-fos and egr-1 are regulated by prostacyclin in rodent osteoblasts and fibroblasts. Endocrinology 137: 4536–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Glendenning P, Ratajczak T, Dick IM, Prince RL (2001) Regulation of the lb isoform of the plasma membrane calcium pump by 1,25-dihydroxyvitamin D3 in rat osteoblast-like cells. J Bone Miner Res 16: 525–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85: 825–36.Google Scholar
  82. 82.
    Granet C, Laroche N, Vico L, Alexandre C, Lafage-Proust MH (1998) Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med Biol Eng Comput 36: 513–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Graves DT, Valentin-Opran A, Delgado R, Valente AJ, Mundy G, Piche J (1989) The potential role of platelet-derived growth factor as an autocrine or paracrine factor for human bone cells. Connect Tissue Res 23: 209–18.PubMedCrossRefGoogle Scholar
  84. 84.
    Grey A, Banovic T, Naot D, Hill B, Callon K, Reid I, et al. (2001) Lysophosphatidic acid is an osteoblast mitogen whose proliferative actions involve G proteins and protein kinase C, but not P42/44 mitogen-activated protein kinases. Endocrinology 142: 1098–106.PubMedCrossRefGoogle Scholar
  85. 85.
    Grigoriadis AE, Heersche JN, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106: 2139–51.PubMedCrossRefGoogle Scholar
  86. 86.
    Grigoriadis AE, Petkovich PM, Ber R, Aubin JE, Heersche JN (1985) Subclone heterogeneity in a clonally-derived osteoblast-like cell line. Bone 6: 249–56.PubMedCrossRefGoogle Scholar
  87. 87.
    Grosse B, Bourdeau A, Lieberherr M (1993) Oscillations in inositol 1,4,5-trisphosphate and diacyglycerol induced by vitamin D3 metabolites in confluent mouse osteoblasts. J Bone Miner Res 8: 1059–69.PubMedCrossRefGoogle Scholar
  88. 88.
    Guenther HL, Hofstetter W, Moseley JM, Gillespie MT, Suda N, Martin TJ (1995) Evidence for the synthesis of parathyroid hormone-related protein (PTHrP) by non-transformed clonal rat osteoblastic cells in vitro. Bone 16: 341–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Guerini D (1998) The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res 292: 191–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Gunnet JW, Granger K, Cryan E, Demarest KT (1999) Characterization of the progestin receptors in the human TE85 and murine MC3T3–E1 osteoblast-like cell lines. J Endocrinol 163: 139–47.PubMedCrossRefGoogle Scholar
  91. 91.
    Gunther T, Schinke T (2000) Mouse genetics have uncovered new paradigms in bone biology. Trends Endocrinol Metab 11: 189–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Gutierrez S, Javed A, Tennant DK, van Rees M, Montecino M, Stein GS, et al. (2002) CCAAT/enhancerbinding proteins (C/EBP) beta and delta activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J Biol Chem 277: 1316–23.PubMedCrossRefGoogle Scholar
  93. 93.
    Hale LV, Ma YF, Santerre RF (2000) Semi-quantitative fluorescence analysis of calcein binding as a measurement of in vitro mineralization. Calcif Tissue Int 67: 80–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Hall TJ, Higgins W, Tardif C, Chambers TJ (1991) A comparison of the effects of inhibitors of carbonic anhydrase on osteoclastic bone resorption and purified carbonic anhydrase isozyme II. Calcif Tissue Int 49: 328–32.PubMedCrossRefGoogle Scholar
  95. 95.
    Hansen CM, Hansen D, Holm PK, Binderup L (2001) Vitamin D compounds exert anti-apoptotic effects in human osteosarcoma cells in vitro. J Steroid Biochem Mol Biol 77: 1–11.PubMedCrossRefGoogle Scholar
  96. 96.
    Hausmann S, Law FM, Bonjour JP, Feyen J, Rizzoli R (1995) Regulation of parathyroid hormone/parathyroid hormone-related protein receptor expression by osteoblast-deposited extracellular matrix in a human osteoblast-like cell line. J Cell Physiol 165: 164–71.PubMedCrossRefGoogle Scholar
  97. 97.
    Havekes B, Schroder van der Elst JP, van der Pluijm G, Goslings BM, Romijn JA, Smit JW (2000) Beneficial effects of retinoic acid on extracellular matrix degradation and attachment behaviour in follicular thyroid carcinoma cell lines. J Endocrinol 167: 229–38.Google Scholar
  98. 98.
    Heinemann DE, Lohmann C, Siggelkow H, Alves F, Engel I, Koster G (2000) Human osteoblast-like cells phagocytose metal particles and express the macrophage marker CD68 in vitro. J Bone Jt Surg Br 82: 283–9.CrossRefGoogle Scholar
  99. 99.
    Hirano S, Ando M (1997) Fluoride mediates apoptosis in osteosarcoma UMR 106 and its cytotoxicity depends on the pH. Arch Toxicol 72: 52–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Hiruma Y, Inoue A, Hirose S, Hagiwara H (1997) Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochem Biophys Res Commun 230: 176–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Hiura K, Sumitani K, Kawata T, Higashino K, Okawa M, Sato T, et al. (1991) Mouse osteoblastic cells (MC3T3El) at different stages of differentiation have opposite effects on osteoclastic cell formation. Endocrinology 128: 1630–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Ho ML, Chang JK, Chuang LY, Hsu HK, Wang GJ (1999) Characteristics of primary osteoblast culture derived from rat fetal calvaria. Kaohsiung J Med Sci 15: 248–55.PubMedGoogle Scholar
  103. 103.
    Hock JM, Krishnan V, Onyia JE, Bidwell JP, Milas J, Stanislaus D (2001) Osteoblast apoptosis and bone turnover. J Bone Miner Res 16: 975–84.PubMedCrossRefGoogle Scholar
  104. 104.
    Hofstetter W, Guenther HL, Stutzer A, Schenk R, Fleisch H, Friis R (1991) Establishment and characterization of two immortalized cell lines of the osteoblastic lineage. J Bone Miner Res 6: 609–22.PubMedCrossRefGoogle Scholar
  105. 105.
    Horowitz MC, Coleman DL, Ryaby JT, Einhorn TA (1989) Osteotropic agents induce the differential secretion of granulocyte-macrophage colony-stimulating factor by the osteoblast cell line MC3T3–E1. J Bone Miner Res 4: 911–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Horowitz MC, Einhorn TA, Philbrick W, Jilka RL (1989) Functional and molecular changes in colony stimulating factor secretion by osteoblasts. Connect Tissue Res 20: 159–68.PubMedCrossRefGoogle Scholar
  107. 107.
    Horowitz MC, Fields A, DeMeo D, Qian HY, Bothwell AL, Trepman E (1994) Expression and regulation of Ly-6 differentiation antigens by murine osteoblasts. Endocrinology 135: 1032–43.PubMedCrossRefGoogle Scholar
  108. 108.
    Horowitz MC, Xi Y, Wilson K, Kacena MA (2001) Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev 12: 9–18.PubMedCrossRefGoogle Scholar
  109. 109.
    Huang YF, Harrison JR, Lorenzo JA, Kream BE (1998) Parathyroid hormone induces interleukin-6 heterogeneous nuclear and messenger RNA expression in murine calvarial organ cultures. Bone 23: 327–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Ihbe A, Baumann G, Heinzmann U, Atkinson MJ (1998) Loss of the differentiated phenotype precedes apoptosis of ROS 17/2.8 osteoblast-like cells. Calcif Tissue Int 63: 208–13.PubMedCrossRefGoogle Scholar
  111. 111.
    Irie K, Zalzal S, Ozawa H, McKee MD, Nanci A (1998) I 4orphological and immunocytochemical characterization of primary osteogenic cell cultures derived from fetal rat cranial tissue. Anat Rec 252: 554–67.PubMedCrossRefGoogle Scholar
  112. 112.
    Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19: 1405–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Itakura Y, Kosugi A, Sudo H, Yamamoto S, Kumegawa M (1988) Development of a new system for evaluating the biocompatibility of implant materials using an osteogenic cell line (MC3T3–E1). J Biomed Mater Res 22: 613–22.PubMedCrossRefGoogle Scholar
  114. 114.
    Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH (1999) Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 14: 1075–83.PubMedCrossRefGoogle Scholar
  115. 115.
    Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13: 793–802.PubMedCrossRefGoogle Scholar
  116. 116.
    Johnson K, Moffa A, Chen Y, Pritzker K, Coding J, Terkeltaub R (1999) Matrix vesicle plasma cell membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J Bone Miner Res 14: 883–92.PubMedCrossRefGoogle Scholar
  117. 117.
    Jones DB, Nolte H, Scholubbers JG, Turner E, Veltel D (1991) Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 12: 101–10.PubMedCrossRefGoogle Scholar
  118. 118.
    Jonsson KB, Frost A, Nilsson 0, Ljunghall S, Ljunggren O (1999) Three isolation techniques for primary culture of human osteoblast-like cells: a comparison. Acta Orthop Scand 70: 365–73.PubMedCrossRefGoogle Scholar
  119. 119.
    Jorgensen NR, Geist ST, Civitelli R, Steinberg TH (1997) ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol 139: 497–506.PubMedCrossRefGoogle Scholar
  120. 120.
    Jorgensen NR, Henriksen Z, Brot C, Eriksen EF, Sorensen OH, Civitelli R, et al. (2000) Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res 15: 1024–32.PubMedCrossRefGoogle Scholar
  121. 121.
    Juretic N, Santibanez JF, Hurtado C, Martinez J (2001) ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. J Cell Biochem 83: 92–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Kanno S, Anuradha CD, Hirano S (2001) Chemotactic responses of osteoblastic MC3T3–E1 cells toward zinc chloride. Biol Trace Elem Res 83: 49–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Kaplan DL, Eielson CM, Horowitz MC, Insogna KL, Weir EC (1996) Tumor necrosis factor-alpha induces transcription of the colony-stimulating factor-1 gene in murine osteoblasts. J Cell Physiol 168: 199–208.PubMedCrossRefGoogle Scholar
  124. 124.
    Karsenty G (2000) Role of Cbfal in osteoblast differentiation and function. Semin Cell Dev Biol 11: 343–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Karsenty G (2001) Minireview: transcriptional control of osteoblast differentiation. Endocrinology 142: 2731–3.PubMedCrossRefGoogle Scholar
  126. 126.
    Kasono K, Sato K, Han DC, Fujii Y, Tsushima T, Shizume K (1988) Stimulation of alkaline phosphatase activity by thyroid hormone in mouse osteoblast-like cells (MC3T3–E1): a possible mechanism of hyperalkaline phosphatasia in hyperthyroidism. Bone Miner 4: 355–63.PubMedGoogle Scholar
  127. 127.
    Kasperk C, Wergedal J, Strong D, Farley J, Wangerin K, Gropp H, et al. (1995) Human bone cell phenotypes differ depending on their skeletal site of origin. J Clin Endocrinol Metab 80: 2511–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Kassem M, Ankersen L, Eriksen EF, Clark BF, Rattan SI (1997) Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7: 514–24.PubMedCrossRefGoogle Scholar
  129. 129.
    Kato Y, Boskey A, Spevak L, Dallas M, Hori M, Bonewald LF (2001) Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in culture. J Bone Miner Res 16: 1622–33.PubMedCrossRefGoogle Scholar
  130. 130.
    Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF (1997) Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res 12: 2014–23.PubMedCrossRefGoogle Scholar
  131. 131.
    Katoh M, Kitamura K, Kitagawa H (1995) Induction of bone resorbing-activity by mouse stromal cell line, MC3T3–G2/PA6. Bone 16: 97–102.PubMedGoogle Scholar
  132. 132.
    Kawata M (2001) Subcellular steroid/nuclear receptor dynamics. Arch Histol Cytol 64: 353–68.PubMedCrossRefGoogle Scholar
  133. 133.
    Kinoshita S, Finnegan M, Bucholz RW, Mizuno K (1999) Three-dimensional collagen gel culture promotes osteoblastic phenotype in bone marrow derived cells. Kobe J Med Sci 45: 201–11.PubMedGoogle Scholar
  134. 134.
    Kirkwood KL, Dziak R, Bradford PG (1996) Inositol trisphosphate receptor gene expression and hormonal regulation in osteoblast-like cell lines and primary osteoblastic cell cultures. J Bone Miner Res 11: 1889–96.PubMedCrossRefGoogle Scholar
  135. 135.
    Kitajima I, Nakajima T, Imamura T, Takasaki I, Kawahara K, Okano T, et al. (1996) Induction of apoptosis in murine clonal osteoblasts expressed by human T-cell leukemia virus type I tax by NF-kappa B and TNF-alpha. J Bone Miner Res 11: 200–10.PubMedCrossRefGoogle Scholar
  136. 136.
    Kitajima I, Soejima Y, Takasaki I, Beppu H, Tokioka T, Maruyama I (1996) Ceramide-induced nuclear translocation of NF-kappa B is a potential mediator of the apoptotic response to TNF-alpha in murine clonal osteoblasts. Bone 19: 263–70.PubMedCrossRefGoogle Scholar
  137. 137.
    Klement BJ, Spooner BS (1992) Endochondral bone formation in embryonic mouse pre-metatarsals. Trans Kans Acad Sci 95: 39–44.PubMedCrossRefGoogle Scholar
  138. 138.
    Klement BJ, Spooner BS (1993) Embryonic mouse pre-metatarsal development in organ culture. J Exp Zool 265: 285–94.PubMedCrossRefGoogle Scholar
  139. 139.
    Klement BJ, Spooner BS (1993) Utilization of micro-gravity bioreactors for differentiation of mammalian skeletal tissue. J Cell Biochem 51: 252–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Klement BJ, Spooner BS (1994) Pre-metatarsal skeletal development in tissue culture at unit-and microgravity. J Exp Zool 269: 230–41.PubMedCrossRefGoogle Scholar
  141. 141.
    Kobayashi M (1997) The relationship between insulin-like growth factor-binding proteins and cell differentiation of osteoblastic clone MC3T3–E1 cells. Hokkaido Igaku Zasshi 72: 85–96.PubMedGoogle Scholar
  142. 142.
    Kobayashi T, Okada K, Kuroda T, Sato K (1997) Osteogenic cell cytotoxicity and biomechanical strength of the new ceramic Diopside. J Biomed Mater Res 37: 100–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Kodama HA, Amagai Y, Koyama H, Kasai S (1982) A new preadipose cell line derived from newborn mouse cal-varia can promote the proliferation of pluripotent hemopoietic stem cells in vitro. J Cell Physiol 112: 89–95.PubMedCrossRefGoogle Scholar
  144. 144.
    Koshihara Y, Kawamura M, Endo S, Tsutsumi C, Kodama H, Oda H, et al. (1989) Establishment of human osteoblastic cells derived from periosteum in culture. In Vitro Cell Dev Biol 25: 37–43.CrossRefGoogle Scholar
  145. 145.
    Kozawa O, Kawamura H, Uematsu T (2000) Sphingosine 1-phosphate amplifies phosphoinositide hydrolysis stimulated by prostaglandin F2 alpha in osteoblasts: involvement of p38MAP kinase. Prostaglandins Leukot Essent Fatty Acids 62: 355–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Kozawa 0, Tokuda H, Matsuno H, Uematsu T (1998) Sphingosine modulates interleukin-6 synthesis in osteoblasts. J Cell Biochem 70: 338–45.PubMedCrossRefGoogle Scholar
  147. 147.
    Krieger NS, Kim SG (1988) Dichlorobenzamil inhibits stimulated bone resorption in vitro. Endocrinology 122: 415–20.PubMedCrossRefGoogle Scholar
  148. 148.
    Kumagai H, Sacktor B, Filburn CR (1991) Purinergic regulation of cytosolic calcium and phosphoinositide metabolism in rat osteoblast-like osteosarcoma cells. J Bone Miner Res 6: 697–708.PubMedCrossRefGoogle Scholar
  149. 149.
    Kumar R, Haugen JD, Penniston JT (1993) Molecular cloning of a plasma membrane calcium pump from human osteoblasts. J Bone Miner Res 8: 505–13.PubMedCrossRefGoogle Scholar
  150. 150.
    Kurihara N, Ishizuka S, Kiyoki M, Haketa Y, Ikeda K, Kumegawa M (1986) Effects of 1,25-dihydroxyvitamin D3 on osteoblastic MC3T3–E1 cells. Endocrinology 118: 940–7.PubMedCrossRefGoogle Scholar
  151. 151.
    Kurzchalia TV, Parton RG (1999) Membrane micro-domains and caveolae. Curr Opin Cell Biol 11: 424–31.PubMedCrossRefGoogle Scholar
  152. 152.
    Lakkakorpi PT, Vaananen HK (1991) Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 6: 817–26.PubMedCrossRefGoogle Scholar
  153. 153.
    Lampasso JD, Kamer A, Margarone J, Dziak R (2001) Sphingosine-1-phosphate effects on PKC isoform expression in human osteoblastic cells. Prostaglandins Leukot Essent Fatty Acids 65: 139–46.PubMedCrossRefGoogle Scholar
  154. 154.
    Laulederkind SJ, Kirtikara K, Raghow R, Ballou LR (2000) The regulation of PGE2 biosynthesis in MG-63 osteosarcoma cells by IL-1 and FGF is cell density-dependent. Exp Cell Res 258: 409–16.PubMedCrossRefGoogle Scholar
  155. 155.
    Li H, Laursen M, Lind M, Sun C, Bunger C (2000) The influence of human intervertebral disc tissue on the metabolism of osteoblast-like cells. Acta Orthop Scand 71: 503–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Li W, Farach-Carson MC (2001) Parathyroid hormone-stimulated resorption in calvaria cultured in serum-free medium is enhanced by the calcium-mobilizing activity of 1,25-dihydroxyvitamin D3. Bone 29: 231–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Lian JB, Canalis E, Robey PG, Boskey AL (1999) In: Flavus MJ et al. (eds) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott Williams and Wilkins, Philadelphia, pp 14–29.Google Scholar
  158. 158.
    Lian JB, Stein GS, Stein JL, van Wijnen AJ (1998) Transcriptional control of osteoblast differentiation. Biochem Soc Trans 26: 14–21.PubMedGoogle Scholar
  159. 159.
    Lisignoli G, Toneguzzi S, Cattini L, Pozzi C, Facchini A (1998) Different expression pattern of cytokine receptors by human osteosarcoma cell lines. Int J Oncol 12: 899–903.PubMedGoogle Scholar
  160. 160.
    Liu R, Farach-Carson MC, Karin NJ (1995) Effects of sphingosine derivatives on MC3T3–E1 pre-osteoblasts: psychosine elicits release of calcium from intracellular stores. Biochem Biophys Res Commun 214: 676–84.PubMedCrossRefGoogle Scholar
  161. 161.
    Liu R, Xu Y, Farach-Carson MC, Vogel JJ, Karin NJ (2000) 1,25 dihydroxyvitamin D3 activates sphingomyelin turnover in ROS17/2.8 osteosarcoma cells without sphingolipid-induced changes in cytosolic Biochem Biophys Res Commun 273: 95–100.Google Scholar
  162. 162.
    Lloyd QP, Kuhn MA, Gay CV (1995) Characterization of calcium translocation across the plasma membrane of primary osteoblasts using a lipophilic calcium-sensitive fluorescent dye, calcium green. J Biol Chem 270: C18.Google Scholar
  163. 163.
    Lundy MW, Lau KH, Blair HC, Baylink DJ (1988) Chick osteoblasts contain fluoride-sensitive acid phosphatase activity. J Histochem Cytochem 36: 1175–80.PubMedCrossRefGoogle Scholar
  164. 164.
    Lyons JM, Karin NJ (2001) A role for G protein-coupled lysophospholipid receptors in sphingolipid-induced Cat+ signaling in MC3T3-El osteoblastic cells. J Bone Miner Res 16: 2035–42.PubMedCrossRefGoogle Scholar
  165. 165.
    Mackie PS, Fisher JL, Zhou H, Choong PF (2001) Bisphosphonates regulate cell growth and gene expression in the UMR 106–01 clonal rat osteosarcoma cell line. Br J Cancer 84: 951–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Mackrill JJ, Challiss RA, O’Connell DA, Lai FA, Nahorski SR (1997) Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Cat+ release channels in mammalian tissues and cell lines. Biochem J 327: 251–8.PubMedGoogle Scholar
  167. 167.
    Majeska RJ, Rodan GA (1982) Alkaline phosphatase inhibition by parathyroid hormone and isoproterenol in a clonal rat osteosarcoma cell line. Possible mediation by cyclic AMP. Calcif Tissue Int 34: 59–66.Google Scholar
  168. 168.
    Majeska RJ, Ryaby JT, Einhorn TA (1994) Direct modulation of osteoblastic activity with estrogen. J Bone Jt Surg Am 76: 713–21.Google Scholar
  169. 169.
    Martin TJ, Ng KW (1994) Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 56: 357–66.PubMedCrossRefGoogle Scholar
  170. 170.
    Matuo Y, Nishi N, Takasuka H, Masuda Y, Nishikawa K, Isaacs JT, et al. (1990) Production and significance of TGF-beta in AT-3 metastatic cell line established from the Dunning rat prostatic adenocarcinoma. Biochem Biophys Res Commun 166: 840–7.PubMedCrossRefGoogle Scholar
  171. 171.
    Mayur N, Lewis S, Catherwood BD, Nanes MS (1993) Tumor necrosis factor alpha decreases 1,25-dihydroxyvitamin D3 receptors in osteoblastic ROS 17/2.8 cells. J Bone Miner Res 8: 997–1003.PubMedCrossRefGoogle Scholar
  172. 172.
    McCabe LR, Kockx M, Lian J, Stein J, Stein G (1995) Selective expression of fos-and jun-related genes during osteoblast proliferation and differentiation. Exp Cell Res 218: 255–62.PubMedCrossRefGoogle Scholar
  173. 173.
    McCarthy TL, Ji C, Centrella M (2000) Links among growth factors, hormones, and nuclear factors with essential roles in bone formation. Crit Rev Oral Biol Med 11: 409–22.CrossRefGoogle Scholar
  174. 174.
    McCauley LK (2001) Transgenic mouse models of metabolic bone disease. Curr Opin Rheumatol 13: 316–25.PubMedCrossRefGoogle Scholar
  175. 175.
    McCauley LK, Koh AJ, Beecher CA, Cui Y, Decker JD, Franceschi RT (1995) Effects of differentiation and transforming growth factor-ßl on PTH/PTHrP receptor mRNA levels in MC3T3–E1 cells. J Bone Miner Res 10: 1243–55.PubMedCrossRefGoogle Scholar
  176. 176.
    McDonald F, Somasundaram B, McCann TJ, Mason WT, Meikle MC (1996) Calcium waves in fluid flow stimulated osteoblasts are G protein mediated. Arch Biochem Biophys 326: 31–8.PubMedCrossRefGoogle Scholar
  177. 177.
    McQuillan DJ, Findlay DM, Hocking AM, Yanagishita M, Midura RJ, Hascall VC (1991) Proteoglycans synthesized by an osteoblast-like cell line (UMR 106–01). Biochem J 277: 199–206.PubMedGoogle Scholar
  178. 178.
    Merrill AH, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, et al. (1997) Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142: 208–25.PubMedCrossRefGoogle Scholar
  179. 179.
    Meszaros JG, Karin NJ (1993) Osteoblasts express the PMCAlb isoform of the plasma membrane Ca’ATPase. J Bone Miner Res 8: 1235–40.PubMedCrossRefGoogle Scholar
  180. 180.
    Meszaros JG, Karin NJ (1995) Inhibitors of ER Cat+ATPase activity deplete the ATP- and thrombin-sensitive Cat’ pool in UMR 106–01 osteosarcoma cells. J Bone Miner Res 10: 704–10.PubMedCrossRefGoogle Scholar
  181. 181.
    Mikuni-Takagaki Y (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17: 57–60.PubMedCrossRefGoogle Scholar
  182. 182.
    Miura Y, O’Driscoll SW (1998) Culturing periosteum in vitro: the influence of different sizes of explants. Cell Transplant 7: 453–7.PubMedCrossRefGoogle Scholar
  183. 183.
    Miyauchi A, Notoya K, Mikuni-Takagaki Y, Takagi Y, Goto M, Miki Y, et al. (2000) Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes. J Biol Chem 275: 3335–42.PubMedCrossRefGoogle Scholar
  184. 184.
    Mogi M, Kondo A, Kinpara K, Togari A (2000) Antiapoptotic action of nerve growth factor in mouse osteoblastic cell line. Life Sci 67: 1197–206.PubMedCrossRefGoogle Scholar
  185. 185.
    Morel G, Chavassieux P, Barenton B, Dubois PM, Meunier PJ, Boivin G (1993) Evidence for a direct effect of growth hormone on osteoblasts. Cell Tissue Res 273: 279–86.PubMedCrossRefGoogle Scholar
  186. 186.
    Morimoto Y, Morimoto H, Murata T, Kobayashi S, Ohba T, Haneji T (1999) Extracts of Actinobacillus actinomycetemcomitans induce apoptotic cell death in human osteoblastic MG63 cells. J Dent Res 78: 735–42.PubMedCrossRefGoogle Scholar
  187. 187.
    Morimoto Y, Ohba T, Kobayashi S, Haneji T (1997) The protein phosphatase inhibitors okadaic acid and calyculin A induce apoptosis in human osteoblastic cells. Exp Cell Res 230: 181–6.PubMedCrossRefGoogle Scholar
  188. 188.
    Murakami H, Nakayama T, Nishijo K, Hosaka T, Nakamata T, Aoyama T, et al. (2002) Morphological and biological heterogeneity of three tumorigenic cell lines derived from a single p53-/- osteoblast-like cell line, MMC2. Cancer Lett 182: 203–11.PubMedCrossRefGoogle Scholar
  189. 189.
    Murrills RJ, Stein LS, Dempster DW (1995) Lack of significant effect of carboxyl-terminal parathyroid hormone-related peptide fragments on isolated rat and chick osteoclasts. Calcif Tissue Int 57: 47–51.PubMedCrossRefGoogle Scholar
  190. 190.
    Nakayama T, Kanoe H, Sasaki MS, Aizawa S, Nakamura T, Toguchida J (1997) Establishment of an osteoblastlike cell line, MMC2, from p53-deficient mice. Bone 21: 313–19.PubMedCrossRefGoogle Scholar
  191. 191.
    Nelissen JM, Torensma R, Pluyter M, Adema GJ, Raymakers RA, van Kooyk Y, et al. (2000) Molecular analysis of the hematopoiesis supporting osteoblastic cell line U2-OS. Exp Hematol 28: 422–32.PubMedCrossRefGoogle Scholar
  192. 192.
    Ng KW, Gummer PR, Michelangeli VP, Bateman JF, Mascara T, Cole WG, et al. (1988) Regulation of alkaline phosphatase expression in a neonatal rat clonal calvarial cell strain by retinoic acid. J Bone Miner Res 3: 53–61.PubMedCrossRefGoogle Scholar
  193. 193.
    O’Brien EA, Williams JH, Marshall Mt (2001) Osteoprotegerin is produced when prostaglandin synthesis is inhibited causing osteoclasts to detach from the surface of mouse parietal bone and attach to the endocranial membrane. Bone 28: 208–14.PubMedCrossRefGoogle Scholar
  194. 194.
    Ohba Y, Ohba T, Sumitani K, Tagami-Kondoh K, Hiura K, Miki Y, et al. (1996) Inhibitory mechanisms of H+ATPase inhibitor bafilomycin Al and carbonic anhydrase II inhibitor acetazolamide on experimental bone resorption. FEBS Lett 387: 175–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Okada Y, Lorenzo JA, Freeman AM, Tomita M, Morham SG, Raisz LG, et al. (2000) Prostaglandin G/H synthase2 is required for maximal formation of osteoclast-like cells in culture. J Clin Invest 105: 823–32.PubMedCrossRefGoogle Scholar
  196. 196.
    Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264: 19076–80.Google Scholar
  197. 197.
    Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16: 191–220.PubMedCrossRefGoogle Scholar
  198. 198.
    Orlandini SZ, Formigli L, Benvenuti S, Lasagni L, Franchi A, Masi L, et al. (1995) Functional and structural interactions between osteoblastic and preosteoclastic cells in vitro. Cell Tissue Res 281: 33–42.PubMedCrossRefGoogle Scholar
  199. 199.
    Orwoll ES, Stribrska L, Ramsey EE, Keenan EJ (1991) Androgen receptors in osteoblast-like cell lines. Calcif Tissue Int 49: 183–7.PubMedCrossRefGoogle Scholar
  200. 200.
    Partridge NC, Alcorn D, Michelangeli VP, Ryan G, Martin TJ (1983) Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin. Cancer Res 43: 4308–14.PubMedGoogle Scholar
  201. 201.
    Partridge NC, Jeffrey JJ, Ehlich LS, Teitelbaum SL, Fliszar C, Welgus HG, et al. (1987) Hormonal regulation of the production of collagenase and a collagenase inhibitor activity by rat osteogenic sarcoma cells. Endocrinology 120: 1956–62.PubMedCrossRefGoogle Scholar
  202. 202.
    Pi M, Garner SC, Flannery P, Spurney RF, Quarles LD (2000) Sensing of extracellular cations in CasR-deficient osteoblasts. Evidence for a novel cation-sensing mechanism. J Biol Chem 275: 3256–63.Google Scholar
  203. 203.
    Pi M, Hinson TK, Quarles L (1999) Failure to detect the extracellular calcium-sensing receptor ( CasR) in human osteoblast cell lines. J Bone Miner Res 14: 1310–19.Google Scholar
  204. 204.
    Pilbeam C, Rao Y, Voznesensky 0, Kawaguchi H, Alander C, Raisz L, et al. (1997) Transforming growth factor-R regulation of prostaglandin G/H synthase-2 expression in osteoblastic MC3T3–E1 cells. Endocrinology 138: 4672–82.Google Scholar
  205. 205.
    Plachot JJ, Thil CL, Enault G, Halpern S, Cournot-Witmer G, Balsan S (1986) Mitochondrial calcium and bone mineralization in the rat fetus. Bone Miner 1: 157–66.PubMedGoogle Scholar
  206. 206.
    Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, et al. (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70: 157–64.PubMedGoogle Scholar
  207. 207.
    Prabhakar U, James IE, Dodds RA, Lee-Rykaczewski E, Rieman DJ, Lipshutz D, et al. (1998) A novel human bone marrow stroma-derived cell line TF274 is highly osteogenic in vitro and in vivo. Calcif Tissue Int 63: 214–20.PubMedCrossRefGoogle Scholar
  208. 208.
    Prufer K, Racz A, Lin GC, Barsony J (2000) Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem 275: 41114–23.PubMedCrossRefGoogle Scholar
  209. 209.
    Qiu QQ, Ducheyne P, Ayyaswamy PS (2000) New bioactive, degradable composite microspheres as tissue engineering substrates. J Biomed Mater Res 52: 66–76.PubMedCrossRefGoogle Scholar
  210. 210.
    Quarles LD, Haupt DM, Davidai G, Middleton JP (1993) Prostaglandin F2 alpha-induced mitogenesis in MC3T3El osteoblasts: role of protein kinase-C-mediated tyrosine phosphorylation. Endocrinology 132: 1505–13.PubMedCrossRefGoogle Scholar
  211. 211.
    Quarles LD, Wenstrup RJ, Castillo SA, Drezner MK (1991) Aluminum-induced mitogenesis in MC3T3–E1 osteoblasts: potential mechanism underlying neoosteogenesis. Endocrinology 128: 3144–51.PubMedCrossRefGoogle Scholar
  212. 212.
    Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3–E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7: 683–92.PubMedCrossRefGoogle Scholar
  213. 213.
    Quinn JM, Neale S, Fujikawa Y, McGee JO, Athanasou NA (1998) Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells. Calcif Tissue Int 62: 527–31.PubMedCrossRefGoogle Scholar
  214. 214.
    Raouf A, Seth A (2002) Discovery of osteoblast-associated genes using cDNA microarrays. Bone 30: 463–71.PubMedCrossRefGoogle Scholar
  215. 215.
    Rapuano BE, Bockman RS (1991) Tumor necrosis factor-alpha stimulates phosphatidylinositol breakdown by phospholipase C to coordinately increase the levels of diacylglycerol, free arachidonic acid and prostaglandins in an osteoblast (MC3T3–E1) cell line. Biochim Biophys Acta 1091: 374–84.PubMedCrossRefGoogle Scholar
  216. 216.
    Rapuano BE, Bockman RS (1997) Protein kinases A and C positively regulate G protein-dependent activation of phosphatidylinositol-specific phospholipase C by tumor necrosis factor-alpha in MC3T3–E1 osteoblasts. J Cell Biochem 65: 198–208.PubMedCrossRefGoogle Scholar
  217. 217.
    Razzouk S, Brunn JC, Qin C, Tye CE, Goldberg HA, Butler WT (2002) Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone 30: 40–7.PubMedCrossRefGoogle Scholar
  218. 218.
    Razzouk S, Lieberherr M, Cournot G (1999) RacGTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol 78: 249–55.PubMedCrossRefGoogle Scholar
  219. 219.
    Redlich K, Pietschmann P, Stulc T, Peterlik M (1997) Comparative study on the effect of calcium channel blockers on basal and parathyroid hormone-induced bone resorption in vitro. Pharmacol Toxicol 80: 262–5.PubMedCrossRefGoogle Scholar
  220. 220.
    Ringbom-Anderson T, Jantti J, Akerman KE (1994) Production and release of matrix vesicles in the cell processes of TPA-treated human osteoblast-like cells. J Bone Miner Res 9: 661–70.PubMedCrossRefGoogle Scholar
  221. 221.
    Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, et al. (1987) Characterization of a human osteosarcoma cell line (Sans-2) with osteoblastic properties. Cancer Res 47: 4961–6.PubMedGoogle Scholar
  222. 222.
    Rodan SB, Insogna KL, Vignery AM, Stewart AF, Broadus AE, D’Souza SM, et al. (1983) Factors associated with humoral hypercalcemia of malignancy stimulate adenylate cyclase in osteoblastic cells. J Clin Invest 72: 1511–5.PubMedCrossRefGoogle Scholar
  223. 223.
    Romanello M, D’Andrea P (2001) Dual mechanism of intercellular communication in HOBIT osteoblastic cells: a role for gap-junctional hemichannels. J Bone Miner Res 16: 1465–76.PubMedCrossRefGoogle Scholar
  224. 224.
    Romanello M, Padoan M, Franco L, Veronesi V, Moro L, D’Andrea P (2001) Extracellular NAD* induces calcium signaling and apoptosis in human osteoblastic cells. Biochem Biophys Res Commun 285: 1226–31.PubMedCrossRefGoogle Scholar
  225. 225.
    Ryder KD, Duncan RL (2000) Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation. Calcif Tissue Int 67: 241–6.PubMedCrossRefGoogle Scholar
  226. 226.
    Ryder KD, Duncan RL (2001) Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Cat+ channels. J Bone Miner Res 16: 240–8.PubMedCrossRefGoogle Scholar
  227. 227.
    Safran JB, Butler WT, Farach-Carson MC (1998) Modulation of osteopontin post-translational state by 1, 25-(OH)2-vitamin. J Biol Chem 273: D3.CrossRefGoogle Scholar
  228. 228.
    Sakamoto S, Sakamoto M (1984) Osteoblast collagenase: collagenase synthesis by clonally derived mouse osteogenic (MC3T3–E1) cells. Biochem Int 9: 51–8.PubMedGoogle Scholar
  229. 229.
    Sakamoto S, Sakamoto M, Goldberg L, Colarusso L, Gotoh Y (1989) Mineralization induced by beta-glycerophosphate in cultures leads to a marked increase in collagenase synthesis by mouse osteogenic MC3T3-El cells under subsequent stimulation with heparin. Biochem Biophys Res Commun 162: 773–80.PubMedCrossRefGoogle Scholar
  230. 230.
    Sarges R, Gallagher A, Chambers TJ, Yeh LA (1993) Inhibition of bone resorption by WK*-/ATPase inhibitors. J Med Chem 36: 2828–30.PubMedCrossRefGoogle Scholar
  231. 231.
    Sato K, Han DC, Fujii Y, Tsushima T, Shizume K (1987) Thyroid hormone stimulates alkaline phosphatase activity in cultured rat osteoblastic cells (ROS 17/2.8) through 3,5,3’-triiodo-L-thyronine nuclear receptors. Endocrinology 120: 1873–81.PubMedCrossRefGoogle Scholar
  232. 232.
    Scheven BA, Milne JS, Robins SP (1997) A novel culture system to generate osteoclasts and bone resorption using porcine bone marrow cells: role of M-CSF. Biochem Biophys Res Commun 231: 231–5.PubMedCrossRefGoogle Scholar
  233. 233.
    Seth A, Lee BK, Qi S, Vary CP (2000) Coordinate expression of novel genes during osteoblast differentiation. J Bone Miner Res 15: 1683–96.PubMedCrossRefGoogle Scholar
  234. 234.
    Shalhoub V, Faust J, Boyle WJ, Dunstan CR, Kelley M, Kaufman S, et al. (1999) Osteoprotegerin and osteoprotegerin ligand effects on osteoclast formation from human peripheral blood mononuclear cell precursors. J Cell Biochem 72: 251–61.PubMedCrossRefGoogle Scholar
  235. 235.
    Shapiro IM (1999) Discovery: Osf2/Cbfal, a master gene of bone formation. Clin Orthod Res 2: 42–6.PubMedGoogle Scholar
  236. 236.
    Shea LD, Wang D, Franceschi RT, Mooney DJ (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6: 605–17.PubMedCrossRefGoogle Scholar
  237. 237.
    Shen V, Kohler G, Peck WA (1983) A high affinity, calmodulin-responsive Ca2+/Mg2+-ATPase in isolated bone cells. Biochim Biophys Acta 727: 230–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Shimizu Y, Saito S, Tagami A, Itoh S, Inomata Y, Fujiwara S, et al. (1993) The artificial restoration of a dental root. J Oral Implantol 19: 14–22.PubMedGoogle Scholar
  239. 239.
    Shinoda J, Kozawa O, Tokuda H, Uematsu T (1999) Effect of ceramide on interleukin-6 synthesis in osteoblast-like cells. Cell Signal 11: 435–41.PubMedCrossRefGoogle Scholar
  240. 240.
    Siggelkow H, Schenck M, Rohde M, Viereck V, Tauber S, Atkinson MJ, et al. (2002) Prolonged culture of HOS 58 human osteosarcoma cells with 1,25-(OH)2D3, TGFbeta, and dexamethasone reveals physiological regulation of alkaline phosphatase, dissociated osteocalcin gene expression, and protein synthesis and lack of mineralization. J Cell Biochem 85: 279–94.Google Scholar
  241. 241.
    Solomon KR, Danciu TE, Adolphson LD, Hecht LE, Hauschka PV (2000) Caveolin-enriched membrane signaling complexes in human and murine osteoblasts. J Bone Miner Res 15: 2380–90.PubMedCrossRefGoogle Scholar
  242. 242.
    Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand ( RANKL)-induced JNK activation. J Biol Chem 276: 8836–40.Google Scholar
  243. 243.
    Staal A, Birkenhager JC, Pols HA, Buurman CJ, Vink-van Wijngaarden T, Kleinekoort W M, et al. (1994). Transforming growth factor beta-induced dissociation between vitamin D receptor level and 1,25-dihydroxyvitamin D3 action in osteoblast-like cells. Bone Miner 26: 27–42.PubMedCrossRefGoogle Scholar
  244. 244.
    Stains JP, Weber JA, Gay CV (2002) Expression of Na+/Ca2+ exchanger isoforms (NCX1 and NCX3) and plasma membrane Ca2+ ATPase during osteoblast differentiation. J Cell Biochem 84: 625–35.PubMedCrossRefGoogle Scholar
  245. 245.
    Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106–01 BSP). J Biol Chem 270: 9420–8.PubMedCrossRefGoogle Scholar
  246. 246.
    Strege DW, Kahn AJ, Jeffrey JJ, Partridge NC (1990) Stimulation of collagenase production by rat osteosarcoma cells can occur in a subpopulation of cells. J Bone Miner Res 5: 963–71.PubMedCrossRefGoogle Scholar
  247. 247.
    Streuli C (1999) Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 11: 634–40.PubMedCrossRefGoogle Scholar
  248. 248.
    Subramanian S, Srienc F (1996) Quantitative analysis of transient gene expression in mammalian cells using the green fluorescent protein. J Biotechnol 49: 137–51.PubMedCrossRefGoogle Scholar
  249. 249.
    Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96: 191–8.PubMedCrossRefGoogle Scholar
  250. 250.
    Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96: 191–8.PubMedCrossRefGoogle Scholar
  251. 251.
    Suwa H, Fujikawa H, Shimodaira K, Ookura F, Saito H, Yanaihara T (1995) Effect of estradiol on 5 alphareductase activity in osteoblast-like cell (UMR106–01). Nippon Naibunpi Gakkai Zasshi 71: 651–8.PubMedGoogle Scholar
  252. 252.
    Takada Y, Kusuda M, Hiura K, Sato T, Mochizuki H, Nagao Y, et al. (1992) A simple method to assess osteoclast-mediated bone resorption using unfractionated bone cells. Bone Miner 17: 347–59.PubMedCrossRefGoogle Scholar
  253. 253.
    Takami A, Takahashi N, Udagawa N, Miyaura C, Suda K, Woo JT, et al. (2000) Intracellular calcium and protein kinase C mediate expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in osteoblasts. Endocrinology 141: 4711–19.PubMedCrossRefGoogle Scholar
  254. 254.
    Takeshita A, Hanazawa S,Amano S, Matumoto T, Kitano S (1993) IL-1 induces expression of monocyte chemoattractant JE in clonal mouse osteoblastic cell line MC3T3-El. J Immunol 150: 1554–62.Google Scholar
  255. 255.
    Tamura S, Kataoka H, Matsui Y, Shionoya Y, Ohno K, Michi KI, et al. (2001) The effects of transplantation of osteoblastic cells with bone morphogenetic protein ( BMP)/carrier complex on bone repair. Bone 29: 169–75.Google Scholar
  256. 256.
    Tamura T, Takahashi N, Akatsu T, Sasaki T, Udagawa N, Tanaka S, et al. (1993) New resorption assay with mouse osteoclast-like multinucleated cells formed in vitro. J Bone Miner Res 8: 953–60.PubMedCrossRefGoogle Scholar
  257. 257.
    Tanaka S, Haji M, Takayanagi R, Sugioka Y, Nawata H (1996) 1,25-Dihydroxyvitamin D3 enhances the enzymatic activity and expression of the messenger ribonucleic acid for aromatase cytochrome P450 synergistically with dexamethasone depending on the vitamin D receptor level in cultured human osteoblasts. Endocrinology 137: 1860–9.Google Scholar
  258. 258.
    Tani-Ishii N, Tsunoda A, Umemoto T (1997) Osteopontin antisense deoxyoligonucleotides inhibit bone resorption by mouse osteoclasts in vitro. J Periodontal Res 32: 480–6.PubMedCrossRefGoogle Scholar
  259. 259.
    Thiebaud D, Akatsu T, Yamashita T, Suda T, Noda T, Martin RE, et al. (1991) Structure-activity relationships in calcitonin gene-related peptide: cyclic AMP response in a preosteoblast cell line (KS-4). J Bone Miner Res 6: 1137–42.PubMedCrossRefGoogle Scholar
  260. 260.
    Thorogood PV, Gray JC (1975) The cellular changes during osteogenesis in bone and bone marrow composite autografts. J Anat 120: 27–47.PubMedGoogle Scholar
  261. 261.
    Titus L, Jackson E,Nanes MS, Rubin JE, Catherwood BD (1991) 1,25-dihydroxyvitamin D reduces parathyroid hormone receptor number in ROS 17/2.8 cells and prevents the glucocorticoid-induced increase in these receptors: relationship to adenylate cyclase activation. J Bone Miner Res 6: 631–7.Google Scholar
  262. 262.
    Toesca A, Pagnotta A, Specchia N (2000) Evidence of type II estrogen receptor in human osteoblast-like cells. Cell Biol Int 24: 303–9.PubMedCrossRefGoogle Scholar
  263. 263.
    Tomomura A, Yamada H, Fujimoto K, Inaba A, Katoh S (2001) Determination of amino acid sequence responsible for suppression of bone resorption by serum calcium-decreasing factor (caldecrin). FEBS Lett 508: 454–8.PubMedCrossRefGoogle Scholar
  264. Tsukamoto T, Matsui T, Fukase M, Fujita T (1991) Platelet-derived growth factor B chain homodimer enhances chemotaxis and DNA synthesis in normal osteoblast-like cells (MC3T3–E1). Biochem Biophys Res Commun 175: 745–51.CrossRefGoogle Scholar
  265. 265.
    van Leeuwen JP, van Driel M, van den Bernd GJ, Pols HA (2001) Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr 11: 199–226.PubMedCrossRefGoogle Scholar
  266. 266.
    Varga F, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Ellinger A, Prinz D, et al. (1999) Tri-iodothyronine inhibits multilayer formation of the osteoblastic cell line, MC3T3-El, by promoting apoptosis. J Endocrinol 160: 57–65.PubMedCrossRefGoogle Scholar
  267. 267.
    Veber DF, Drake FH, Gowen M (1997) The new partnership of genomics and chemistry for accelerated drug development. Curr Opin Chem Biol 1: 151–6.PubMedCrossRefGoogle Scholar
  268. 268.
    Vermes C, Glant TT, Hallab NJ, Fritz EA, Roebuck KA, Jacobs JJ (2001) The potential role of the osteoblast in the development of periprosthetic osteolysis: review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors. J Arthroplasty 16: 95–100.PubMedCrossRefGoogle Scholar
  269. 269.
    Vilien M, Wolf H (1978) The specificity of the microcytotoxicity assay for cell-mediated immunity in human bladder cancer. J Urol 119: 338–42.PubMedGoogle Scholar
  270. 270.
    Villars F, Guillotin B, Amedee T, Dutoya S, Bordenave L, Bareille R, et al. (2002) Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol Cell Physiol 282: 775–85.Google Scholar
  271. 271.
    Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT (1999) Isolation and characterization of MC3T3–E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 14: 893–903.PubMedCrossRefGoogle Scholar
  272. 272.
    Watson LP, Kang YH, Falk MC (1989) Cytochemical properties of osteoblast cell membrane domains. J Histochem Cytochem 37: 1235–46.PubMedCrossRefGoogle Scholar
  273. 273.
    Waugh MG, Minogue S, Anderson JS, dos Santos M, Hsuan, JJ (2001) Signalling and non-caveolar rafts. Biochem Soc Trans 29: 509–11.PubMedCrossRefGoogle Scholar
  274. 274.
    White KE, Gesek FA, Friedman PA (1996) Na+/Ca2+ exchange in rat osteoblast-like UMR 106 cells. J Bone Miner Res 11: 1666–75.PubMedCrossRefGoogle Scholar
  275. 275.
    Xia SL, Ferrier J (1992) Propagation of a calcium pulse between osteoblastic cells. Biochem Biophys Res Commun 186: 1212–19.PubMedCrossRefGoogle Scholar
  276. 276.
    Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 55: 151–7.PubMedCrossRefGoogle Scholar
  277. 277.
    Yamaguchi DT, Huang J, Ma D, Wang PK (2002) Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J Cell Physiol 190: 180–8.PubMedCrossRefGoogle Scholar
  278. 278.
    Yamaguchi T, Chattopadhyay N, Kifor O, Butters RR Jr, Sugimoto T, Brown E M. (1998) Mouse osteoblastic cell line (MC3T3–E1) expresses extracellular calcium [Ca2+]o-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3–E1 cells. J Bone Miner Res 13: 1530–8.PubMedCrossRefGoogle Scholar
  279. 279.
    Yamashita T, Asano K, Takahashi N, Akatsu T, Udagawa N, Sasaki T, et al. (1990) Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells. J Cell Physiol 145: 587–95.PubMedCrossRefGoogle Scholar
  280. 280.
    Yamashita T, Ishii H, Shimoda K, Sampath TK, Katagiri T, Wada M, et al. (1996) Subcloning of three osteoblastic cell lines with distinct differentiation phenotypes from the mouse osteoblastic cell line KS-4. Bone 19: 429–36.PubMedCrossRefGoogle Scholar
  281. 281.
    Yang X, Halladay D, Onyia JE, Martin TJ, Chandrasekhar S (2002) Protein kinase C is a mediator of the synthesis and secretion of osteoprotegerin in osteoblast-like cells. Biochem Biophys Res Commun 290: 42–6.PubMedCrossRefGoogle Scholar
  282. 282.
    Yang XB, Roach HI, Clarke NM, Howdle SM, Quirk R, Shakesheff KM, et al. (2001) Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone 29: 523–31.PubMedCrossRefGoogle Scholar
  283. 283.
    Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, et al. (1997) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem (Tokyo) 121: 969–73.CrossRefGoogle Scholar
  284. 284.
    Yellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ (2000) Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res 15: 209–17.PubMedCrossRefGoogle Scholar
  285. 285.
    Zaidi M, Bax BE, Shankar VS, Moonga BS, Simon B, Alam AS, et al. (1994) Dimensional analysis of osteoclastic bone resorption and the measurement of biologically active calcitonin. Exp Physiol 79: 387–99.PubMedGoogle Scholar
  286. 286.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–28.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Norman J. Karin
  • Mary C. Farach-Carson

There are no affiliations available

Personalised recommendations