Skip to main content

Abstract

The word “cement” comes from the domain of architecture construction. It consists of a system of powder/liquid materials which, when mixed to a paste, set to a hard mass. “Bone cement” uses this system for application in medicine, for example: filling of bone defects and fixation of surgical prostheses, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gluck T. Referat über die durch das moderne chirurgische Experiment gewonnenen positiven Resultate, betreffend die Naht und den Ersatz von Defecten hOerer Gewebe, sowie über die Verwerthung resor-birbarer und lebendiger Tampons in der Chirurgie. Archiv fur klinische Chirurgie 1891;41:187.

    Google Scholar 

  2. Haboush EJ. A new operation for arthroplasty of the hip based on biomechanics, photo elasticity, fast-setting dental acrylic, and other considerations. Bull Hosp Joint Dis 1953;14:242.

    PubMed  CAS  Google Scholar 

  3. Charnely J. The bonding of prostheses to bone by cement. J Bone Joint Surg [Br] 1964;46:518.

    Google Scholar 

  4. Sorensen WG, Bloom JD, Kelly PJ. The effects of intramedullary methylmethacrylate and reaming on the circulation of the tibia after osteotomy and plate fixation in dogs. J Bone Joint Surg [Am] 1979; 61(3):417–24.

    CAS  Google Scholar 

  5. Brown WE, Chow LC. A new calcium phosphate, water-setting cement. Westerville, OH: American Ceramic Society, 1986.

    Google Scholar 

  6. Mirtchi AA, Lemaitre J, Munting E. Calcium phosphate cement: Action of setting regulators on the properties of tricalcium phosphate-monocalcium phosphate cement. Biomaterials 1989;10:634–8.

    Article  PubMed  CAS  Google Scholar 

  7. Ginebra MP, Fernandez E, Boltong MG, Bermudez O, Planell JA, Driessens FC. Compliance of an apatitic calcium phosphate cement with the short-term clinical requirements in bone surgery, orthopaedics and dentistry. Clin Mater 1994;17(2):99–104.

    Article  PubMed  CAS  Google Scholar 

  8. Kurashina K, Kurita H, Kotani A, Kobayashi S, Kyoshima K, Hirano M. Experimental cranioplasty and skeletal augmentation using an alpha-tricalcium phos-phate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement: a preliminary short-term experiment in rabbits. Biomaterials 1998;19:701–6.

    Article  PubMed  CAS  Google Scholar 

  9. Liu CS, Shen W, Gu YF, Hu LM. Mechanism of the hardening process for a hydroxyapatite cement. J Biomed Mater Res 1997;35:75–80.

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez E, Gil FJ, Best SM, Ginebra MP, Driessens FC, Planell JA. Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHP04-alpha-Ca3(PO4)2 system: compressive strength and microstructural development. J Biomed Mater Res 1998;41(4):560–7.

    Article  PubMed  CAS  Google Scholar 

  11. Trap B, Wolff P, Jensen JS. Acrylic bone cement: residuals and extractability of methacrylate monomers and aromatic amines. J Appl Biomater 1992;3:51–7.

    Article  Google Scholar 

  12. ISO 5833: International standards for implants for surgery acrylic resin cement. International Standards Organisation, 1992.

    Google Scholar 

  13. Jasty M, Davies JP, O’Connor DO, Burke DW, Harrigan TP, Harris WH. Porosity of various preparations of acrylic bone cements. Clin Orthop 1990;259:122–9.

    PubMed  Google Scholar 

  14. Jasty M, Maloney WJ, Bragdon CR, Haire T, Harris WH. Histomorphological studies of the long-term skeletal responses to well-fixed cemented femoral components. J Bone Joint Surg [Am] 1990;72(8):1220–9.

    CAS  Google Scholar 

  15. Davies JP, O’Connor DO, Burke DW, Jasty M, Harris WH. The effect of centrifugation on the fatigue life of bone cement in the presence of surface irregularities. Clin Orthop 1988;229:156–61.

    PubMed  Google Scholar 

  16. Davies JP, Harris WH. Optimization and comparison of three vacuum mixing systems for porosity reduction of Simplex P cement. Clin Orthop 1990;254:261–9.

    PubMed  Google Scholar 

  17. Lautenschlager EP, Stupp SI, Keller JC. Structure and properties of acrylic bone cement. In: Ducheyne P, Hastings GW, editors. Functional behavior of orthopaedic biomaterials, vol II. Application. Florida: CPC Press, 1984;87–119.

    Google Scholar 

  18. Ishidara K. Hard tissue compatible polymers. In: Tsuruta et al., editors. Biomedical application of polymeric materials. CPC Press, 1993;143.

    Google Scholar 

  19. Haas SS, Brauer GM, Dickson G. A characterization of polymethylmethacrylate bone cement. J Bone Joint Surg [Am] 1975;57:380–91.

    CAS  Google Scholar 

  20. Harrigan TP, Kareh JA, O’Connor DO, Burke DW, Harris WH. A finite element study of the initiation of failure of fixation in cemented femoral total hip components. J Orthop Res 1992;10(1):134–44.

    Article  PubMed  CAS  Google Scholar 

  21. James SP, Schmalzried TP, McGarry FJ, Harris WH. Extensive porosity at the cement-femoral prosthesis interface: a preliminary study. J Biomed Mater Res 1993;27(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  22. Keller JC, Lautenschlager EP, Marshall GW Jr, Meyer PR Jr. Factors affecting surgical alloy/bone cement interface adhesion. J Biomed Mater Res 1980;14(5):639–51.

    Article  PubMed  CAS  Google Scholar 

  23. Bannister GC, Miles AW, May PC. Properties of bone cement prepared under operating theatre conditions. Clin Mater 1989;4:343–7.

    Article  Google Scholar 

  24. Bean DJ, Hollis JM, Woo SL, Convery FR. Sustained pressurization of polymethylmethacrylate: a comparison of low- and moderate-viscosity bone cements. J Orthop Res 1988;6(4):580–4.

    Article  PubMed  CAS  Google Scholar 

  25. Linder L. Reactions to bone cement. In: Williams DF, editor. Bio compatibility of Orthopedic implants. Vol. II. Boca Raton, FL: CRC Press, 1982;1–23.

    Google Scholar 

  26. De Waal Malefijt J, Sloof TJ, Huiskes R. The actual status of acrylic bone cement in total hip replacement. A review. Acta Orthop Belg 1987;53(1):52–8.

    Google Scholar 

  27. Schoenfeld CM, Conard GJ, Lautenschlager EP. Monomer release from methacrylate bone cements during simulated in vivo polymerization. J Biomed Mater Res 1979;13(1):135–47.

    Article  PubMed  CAS  Google Scholar 

  28. Lu JX, Huang ZW, Tropiano P, Clouet d’Orval B, Remusat M, Déjou J et al. Human biological reactions at the interface between bone tissue and polymethylmethacrylate cement. J Mater Sci: Mater Med 2000 (accepted).

    Google Scholar 

  29. Frondoza CG, Tanner KT, Jones LC, Hungerford DS. Polymethylmethacrylate particles enhance DNA and protein synthesis of human fibroblasts in vitro. J Biomed Mater Res 1993;27(5):611–7.

    Article  PubMed  CAS  Google Scholar 

  30. Golds EE, Mason P, Nyirkos P. Inflammatory cytokines induce synthesis and secretion of gro protein and a neutrophil chemotactic factor but not beta 2-microglobulin in human synovial cells and fibroblasts. Biochem J 1989;259:585–8.

    PubMed  CAS  Google Scholar 

  31. Dayer JM, Beutler B, Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med 1985;162:2163–8.

    Article  PubMed  CAS  Google Scholar 

  32. Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J 1990;4(11):2860–7.

    PubMed  CAS  Google Scholar 

  33. Swan A, Dularay B, Dieppe P. A comparison of the effects of urate, hydroxyapatite and diamond crystals on polymorphonuclear cells: relationship of mediator release to the surface area and adsorptive capacity of different particles. J Rheumatol 1990;17(10):1346–52.

    PubMed  CAS  Google Scholar 

  34. Goldring MB, Goldring SR. Skeletal tissue response to cytokines. Clin Orthop 1990;258:245–78.

    PubMed  Google Scholar 

  35. Murray DW, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg [Br] 1990;72(6):988–92.

    CAS  Google Scholar 

  36. Davis RG, Goodman SB, Smith RL, Lerman JA, Williams RJ III. The effects of bone cement powder on human adherent monocytes/macrophages in vitro. J Biomed Mater Res 1993;27(8):1039–46.

    Article  PubMed  CAS  Google Scholar 

  37. Glant TT, Jacobs JJ. Response of three murine macrophage populations to particulate debris: bone resorption in organ cultures. J Orthop Res 1994; 12(5):720–31.

    Article  PubMed  CAS  Google Scholar 

  38. Horowitz SM, Rapuano BP, Lane JM, Burstein AH. The interaction of the macrophage and the osteoblast in the pathophysiology of aseptic loosening of joint replacements. Calcif Tissue Int 1994;54(4):320–4.

    Article  PubMed  CAS  Google Scholar 

  39. Herman JH, Sowder WG, Anderson D, Appel AM, Hopson CN. Polymethylmethacrylate-induced release of bone-resorbing factors. J Bone Joint Surg [Am] 1989;71(10):1530–41.

    CAS  Google Scholar 

  40. Takagi M, Konttinen YT, Santavirta S, Sorsa T, Eisen AZ, Nordsletten L et al. Extracellular matrix metallopro-teinases around loose total hip prostheses. Acta Orthop Scand 1994;65(3):281–6.

    Article  PubMed  CAS  Google Scholar 

  41. Horowitz SM, Gonzales JB. Effects of polyethylene on macrophages. J Orthop Res 1997;15(1):50–6.

    Article  PubMed  CAS  Google Scholar 

  42. Lee SH, Brennan FR, Jacobs JJ, Urban RM, Ragasa DR, Giant TT. Human monocyte/macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J Orthop Res 1997;15(1):40–9.

    Article  PubMed  CAS  Google Scholar 

  43. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Giant TT. Human monocyte response to particulate biomaterials generated in vivo and in vitro. J Orthop Res 1995; 13(5):792–801.

    Article  PubMed  CAS  Google Scholar 

  44. Horowitz SM, Gautsch TL, Frondoza CG, Riley L Jr. Macrophage exposure to polymethyl methacrylate leads to mediator release and injury. J Orthop Res 1991;9(3):406–13.

    Article  PubMed  CAS  Google Scholar 

  45. Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop 1992;276:7–18.

    PubMed  Google Scholar 

  46. Harris WH. Osteolysis and particle disease in hip replacement. A review. Acta Orthop Scand 1994; 65(1):113–23.

    Article  CAS  Google Scholar 

  47. Maloney WJ, Smith RL. Periprosthetic osteolysis in total hip arthroplasty: the role of particulate wear debris. Instr Course Lect 1996;45:171–82.

    PubMed  CAS  Google Scholar 

  48. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Radio-opaque agents in bone cement increase bone resorption. J Bone Joint Surg [Br] 1997;79(1):129–34.

    Article  CAS  Google Scholar 

  49. Wang W, Ferguson DJ, Quinn JM, Simpson AH, Athanasou NA. Biomaterial particle phagocytosis by bone-resorbing osteoclasts. J Bone Joint Surg [Br] 1997; 79(5):849–56.

    Article  CAS  Google Scholar 

  50. Thomson LA, Law FC, James KH, Matthew CA, Rushton N. Bio compatibility of particulate polymethylmethacrylate bone cements: a comparative study in vitro and in vivo. Biomaterials 1992;13(12):811–8.

    Article  PubMed  CAS  Google Scholar 

  51. Willert HG, Bertram H, Buchhorn GH. Osteolysis in alloarthroplasty of the hip. The role of bone cement fragmentation. Clin Orthop 1990;258:108–21.

    PubMed  Google Scholar 

  52. Jensen LN, Sturup J, Kramhoft M, Jensen JS. Histological evaluation of cortical bone reaction to PMMA cement. Acta Orthop Belg 1991;57(3):254–9.

    PubMed  CAS  Google Scholar 

  53. Nimb L, Sturup J, Jensen JS. Improved cortical histology after cementation with a new MMA-DMA-IBMA bone cement: an animal study. J Biomed Mater Res 1993;27(5):565–74.

    Article  PubMed  CAS  Google Scholar 

  54. Revell PA, Braden M, Freeman MA. Review of the biological response to a novel bone cement containing poly(ethyl methacrylate) and n-butyl methacrylate. Biomaterials 1998;19(17):1579–86.

    Article  PubMed  CAS  Google Scholar 

  55. Charnley J. The reaction of bone to self-curing acrylic cement. A long-term histological study in man. J Bone Joint Surg [Br] 1970;52(2):340–53.

    CAS  Google Scholar 

  56. Pizzoferrato A, Ciapetti G, Stea S, Toni A. Cellular events in the mechanisms of prosthesis loosening. Clin Mater 1991;7(1):51–81.

    Article  PubMed  CAS  Google Scholar 

  57. Albrektsson T. Osseous penetration rate into implants pretreated with bone cement. Arch Orthop Trauma Surg 1981;102:141.

    Article  Google Scholar 

  58. Morberg P, Albrektsson T. Bone reactions to intramedullary insertion of methyl methacrylate. Eur J Muskuloskel Res 1992;1:11.

    CAS  Google Scholar 

  59. Morberg P et al. Impaired cortical bone formation after intramedullary insertion of bone cement. Clin Mater 1992;10:139.

    Article  CAS  Google Scholar 

  60. Christensen SB. Osteoarthrosis: Changes of bone, cartilage and synovial membrane in relation to bone scintigraphy. Acta Orthop Scand Suppl 1985;214:1–43.

    PubMed  CAS  Google Scholar 

  61. Sturup J, Madsen J, Tondevold E, Jensen JS. Decreased blood perfusion in canine tibial diaphysis after filling with acrylic bone cement compared with inert bone wax. Acta Orthop Scand 1990;61(2):143–7.

    Article  PubMed  CAS  Google Scholar 

  62. Mongiorgi R, Valdre G, Giardino R, Maggi G, Prati C, Bertocchi G. Thermo dynamical aspects of the polymerization reaction of PMMA cement mixed with phosphatic mineral phases. Boll Soc Ital Biol Sper 1993;69(6):365–72.

    PubMed  CAS  Google Scholar 

  63. Berman AT, Reid JS, Yanicko DR Jr, Sih GC, Zimmerman MR. Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin Orthop 1984;186:284–92.

    PubMed  Google Scholar 

  64. Park JB, Turner RC, Atkins PE. EPR study of free radicals in PMMA bone cement: a feasibility study. Bio-mater Med Devices Artif Organs 1980;8(1):23–33.

    CAS  Google Scholar 

  65. Biehl G, Harms J, Hanser U. Experimental studies on heat development in bone during polymerization of bone cement. Intraoperative measurement of temperature in normal blood circulation and in bloodless-ness. Arch Orthop Unfallchir 1974;78(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  66. Rhinelander FW, Nelson CL, Stewart RD, Stewart CL. Experimental reaming of the proximal femur and acrylic cement implantation: vascular and histologic effects. Clin Orthop 1979;141:74–89.

    PubMed  Google Scholar 

  67. Lundskog J. Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scand J Plast Reconstr Surg 1972;9:1–80.

    PubMed  CAS  Google Scholar 

  68. Lee AJ, Wrighton JD. Some properties of polymethylmethacrylate with reference to its use in orthopedic surgery. Clin Orthop 1973;95:281–7.

    PubMed  Google Scholar 

  69. Sund G, Rosenquist J. Morphological changes in bone following intramedullary implantation of methyl methacrylate. Effects of medullary occlusion: a mor-phometrical study. Acta Orthop Scand 1983;54(2): 148–56.

    Article  PubMed  CAS  Google Scholar 

  70. Williams RP, McQueen DA. A histopathologic study of late aseptic loosening of cemented total hip prostheses. Clin Orthop 1992;275:174–9.

    PubMed  Google Scholar 

  71. Harris WH. The problem is osteolysis. Clin Orthop 1995;311:46–53.

    PubMed  Google Scholar 

  72. Jasty M, Jiranek W, Harris WH. Acrylic fragmentation in total hip replacements and its biological consequences. Clin Orthop 1992;285:116–28.

    PubMed  Google Scholar 

  73. Jasty M, Bragdon CR, Lee K, Hanson A, Harris WH. Surface damage to cobalt-chrome femoral head prostheses. J Bone Joint Surg [Br] 1994;76(1):73–7.

    CAS  Google Scholar 

  74. Jensen LN, Jensen JS, Gotfredsen K. A method for histological preparation of undecalcified bone sections containing acrylic bone cement. Biotech Histochem 1991;1(2):82–6.

    Article  PubMed  CAS  Google Scholar 

  75. Goodman SB, Fornasier VL, Kei J. The effects of bulk versus particulate polymethylmethacrylate on bone. Clin Orthop 1988;232:255–62.

    PubMed  CAS  Google Scholar 

  76. Renvall S. Bone cement and wound healing. An experimental study in the rat. Ann Chir Gynaecol 1991; 80(3):285–8.

    PubMed  CAS  Google Scholar 

  77. Quinn J, Joyner C, Triffitt JT, Athanasou NA. Poly-methylmethacrylate-induced inflammatory macrophages resorb bone. J Bone Joint Surg [Br] 1992;74(5): 652–8.

    CAS  Google Scholar 

  78. Santavirta S, Gristina A, Konttinen YT. Cemented versus cementless hip arthroplasty. A review of prosthetic biocompatibility. Acta Orthop Scand 1992; 63(2):225–32.

    Article  PubMed  CAS  Google Scholar 

  79. Horowitz SM, Frondoza CG, Lennox DW. Effects of polymethylmethacrylate exposure upon macrophages. J Orthop Res 1988;6(6):827–32.

    Article  PubMed  CAS  Google Scholar 

  80. Havelin LI, Espehaug B, Vollset SE, Engesaeter LB. The effect of the type of cement on early revision of Charn-ley total hip prostheses. A review of 8,579 primary arthroplasties from the Norwegian Arthroplasty Register. J Bone Joint Surg [Am] 1995;77(10):1543–50.

    CAS  Google Scholar 

  81. Hungerford DS, Jones LC. The rationale of cementless revision of cemented arthroplasty failures. Clin Orthop 1988;235:12–24.

    PubMed  Google Scholar 

  82. Herberts P, Ahnfelt L, Malchau H, Stromberg C, Andersson GB. Multicenter clinical trials and their value in assessing total joint arthroplasty. Clin Orthop 1989;249:48–55.

    PubMed  Google Scholar 

  83. Herberts P, Malchau H. How outcome studies have changed total hip arthroplasty practices in Sweden. Clin Orthop 1997;344:44–60.

    PubMed  Google Scholar 

  84. Ohashi KL, Dauskardt RH. Effects of fatigue loading and PMMA precoating on the adhesion and subcriti-cal debonding of prosthetic-PMMA interfaces. J Biomed Mater Res 2000;51(2):172–83.

    Article  PubMed  CAS  Google Scholar 

  85. Dahl OE, Johnsen H, Kierulf P, Moinar I, Ro JS, Vinje A et al. Intrapulmonary thrombin generation and its relation to monomethylmethacrylate plasma levels during hip arthroplasty. Acta Anaesthesiol Scand 1992;36(4):331–5.

    Article  PubMed  CAS  Google Scholar 

  86. Gentil B, Paugam C, Wolf C, Lienhart A, Augereau B. Methylmethacrylate plasma levels during total hip arthroplasty. Clin Orthop 1993;287:112–6.

    PubMed  Google Scholar 

  87. Svartling N, Pfaffli P, Tarkkanen L. Methylmethacrylate blood levels in patients with femoral neck fracture. Arch Orthop Trauma Surg 1985;104(4):242–6.

    Article  PubMed  CAS  Google Scholar 

  88. Patterson BM, Healey JH, Cornell CN, Sharrock NE. Cardiac arrest during hip arthroplasty with a cemented long-stem component. A report of seven cases. J Bone Joint Surg [Am] 1991;73(2):271–7.

    CAS  Google Scholar 

  89. Wenda K, Scheuermann H, Weitzel E, Rudigier J. Pharmacokinetics of methylmethacrylate monomer during total hip replacement in man. Arch Orthop Trauma Surg 1988;107(5):316–21.

    Article  PubMed  CAS  Google Scholar 

  90. Crout DH, Corkill JA, James ML, Ling RS. Methylmethacrylate metabolism in man. The hydrolysis of methylmethacrylate to methacrylic acid during total hip replacement. Clin Orthop 1979;141:90–5.

    PubMed  CAS  Google Scholar 

  91. Orsini EC, Byrick RJ, Mullen JB, Kay JC, Waddell JP. Cardiopulmonary function and pulmonary micro emboli during arthroplasty using cemented or non-cemented components. The role of intramedullary pressure. J Bone Joint Surg [Am] 1987;69(6):822–32.

    CAS  Google Scholar 

  92. Hofmann AA, Wyatt RW, Gilbertson AA, DeKoss L, Miller J. The effect of air embolization from the femoral canal on hemodynamic parameters during hip arthroplasty. Clin Orthop 1987;218:290–6.

    PubMed  Google Scholar 

  93. Fregert S. Occupational hazards of acrylate bone cement in orthopaedic surgery. Acta Orthop Scand 1983;54(6):787–9.

    Article  PubMed  CAS  Google Scholar 

  94. Bengtson A, Larsson M, Gammer W, Heideman M. Anaphylatoxin release in association with methylmethacrylate fixation of hip prostheses. J Bone Joint Surg [Am] 1987;69(1):46–9.

    CAS  Google Scholar 

  95. Kanerva L, Estlander T, Jolanki R, Tarvainen K. Occupational allergic contact dermatitis and contact urticaria caused by polyfunctional aziridine hardener. Contact Dermatitis 1995;33(5):304–9.

    Article  PubMed  CAS  Google Scholar 

  96. Brauer GM, Davenport RM, Hansen WC. Accelerating effect of amines on polymerization of methyl methacrylate. Mod Plastic 1956;34(11): 154–256.

    Google Scholar 

  97. Lai J, Green RJ. Effect of amine accelerators on the polymerization of methacrylate with benzoyl peroxide. J Polym Sci 1955;18:403.

    Google Scholar 

  98. Vazquez B, Elvira C, Levenfeld B, Pascual B, Goni I, Gurruchaga M et al. Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements. J Biomed Mater Res 1997;34(1):129–36.

    Article  PubMed  CAS  Google Scholar 

  99. Fritsch EW Static and fatigue properties of two new low-viscosity PMMA bone cements improved by vacuum mixing. J Biomed Mater Res 1996;31(4):451–6.

    Article  PubMed  CAS  Google Scholar 

  100. Morita S, Kawachi S, Yamamoto H, Shinomiya K, Nakabayashi N, Ishihara K. Total hip arthroplasty using bone cement containing tri-n-butylborane as the initiator. J Biomed Mater Res 1999;48(5):759–63.

    Article  PubMed  CAS  Google Scholar 

  101. Pourdeyhimi B, Wagner HD. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular-weight polyethylene fibers. J Biomed Mater Res 1989;23(1):63–80.

    Article  PubMed  CAS  Google Scholar 

  102. Saha S, Pal S. Improvement of mechanical properties of acrylic bone cement by fiber reinforcement. J Biomech 1984;17(7):467–78.

    Article  PubMed  CAS  Google Scholar 

  103. Topoleski LD, Ducheyne P, Cuckler JM. The fracture toughness of titanium-fiber-reinforced bone cement. J Biomed Mater Res 1992;26(12):1599–617.

    Article  PubMed  CAS  Google Scholar 

  104. Ishihara K, Arai H, Nakabayashi N, Morita S, Furuya K. Adhesive bone cement containing hydroxyapatite particle as bone compatible filler. J Biomed Mater Res 1992;26(7):937–45.

    Article  PubMed  CAS  Google Scholar 

  105. Beruto DT, Mezzasalma SA, Capurro M, Botter R, Cirillo P. Use of alpha-tricalcium phosphate (TCP) as powders and as an aqueous dispersion to modify processing, microstructure, and mechanical properties of polymethylmethacrylate (PMMA) bone cements and to produce bone-substitute compounds. J Biomed Mater Res 2000;49(4):498–505.

    Article  PubMed  CAS  Google Scholar 

  106. Heikkila JT, Aho AJ, Kangasniemi I, Yli-Urpo A. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Biomaterials 1996;17(18):1755–60.

    Article  PubMed  CAS  Google Scholar 

  107. Edwards JT, Brunski JB, Higuchi HW. Mechanical and morphologic investigation of the tensile strength of a bone-hydroxyapatite interface. J Biomed Mater Res 1997;36(4):454–68.

    Article  PubMed  CAS  Google Scholar 

  108. Driessens FCM, Boltong MG, Bermudez O, Pianeil JA. Formulation and setting times of some calcium orthophosphate cements: a pilot study. J Mater Sci: Mater Med 1993;4:503–8.

    Article  CAS  Google Scholar 

  109. Driessens FCM, Boltong MG, Bermudez O, Planell JA, Ginebra MP, Fernandez E. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci: Mater Med 1994;5:164–70.

    Article  CAS  Google Scholar 

  110. Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 1999;57(9):1122–6.

    Article  PubMed  CAS  Google Scholar 

  111. Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone 1999;25(2 Suppl):31S–4S.

    Article  PubMed  CAS  Google Scholar 

  112. Liu CS, Wang W, Shen W, Chen TY, Hu LM, Chen ZW. Evaluation of the bio compatibility if a nonceramic hydroxyapatite. J Endodont 1997;23(8):490–3.

    Article  CAS  Google Scholar 

  113. Higashi S, Ohsumi T, Ozumi K, Kuroki K, Inokuchi Y, Terashita M. Evaluation of cytotoxicity of calcium phosphate cement consisting of alpha-tricalcium phosphate and dicalcium phosphate dihydrate. Dent Mater J 1998;17(3):186–94.

    Article  PubMed  CAS  Google Scholar 

  114. Lu JX, About I, Stephan G, Van Landuyt P, Dejou J, Fiocchi M et al. Histological and biomechanical studies of two bone colonizable cements in rabbits. Bone 1999;25(2 Suppl):41S-5S.

    Article  PubMed  CAS  Google Scholar 

  115. Pioletti DP, Takei H, Lin T, Van Landuyt P, Ma QJ, Kwon SY et al. The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 2000; 21(11):1103–14.

    Article  PubMed  CAS  Google Scholar 

  116. Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 1996;30(2):193–200.

    Article  PubMed  CAS  Google Scholar 

  117. Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yoshida Y, Nagayama M et al. Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res 1997;37(4):457–64.

    Article  PubMed  CAS  Google Scholar 

  118. Ikenaga M, Hardouin P, Lemaitre J, Andrianjatovo H, Flautre B. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J Biomed Mater Res 1998;40(1):139–44.

    Article  PubMed  CAS  Google Scholar 

  119. Frayssinet P, Gineste L, Conte P, Fages J, Rouquet N. Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 1998; 19 (11–12):971–7.

    Article  PubMed  CAS  Google Scholar 

  120. Costantino PD, Friedman CD, Jones K, Chow LC, Sisson GA. Experimental hydroxyapatite cement cranioplasty. Plast Reconstr Surg 1992;90(2):174–85.

    PubMed  CAS  Google Scholar 

  121. Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ, Sisson GA Sr. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 1991;117(4): 385–9.

    Article  PubMed  CAS  Google Scholar 

  122. Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S et al. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 1998;19(17): 1587–91.

    Article  PubMed  CAS  Google Scholar 

  123. Shindo ML, Costantino PD, Friedman CD, Chow LC. Facial skeletal augmentation using hydroxyapatite cement. Arch Otolaryngol Head Neck Surg 1993; 119(2):185–90.

    Article  PubMed  CAS  Google Scholar 

  124. Kveton JF, Friedman CD, Piepmeier JM, Costantino PD. Reconstruction of suboccipital craniectomy defects with hydroxyapatite cement: a preliminary report. Laryngoscope 1995;105(2): 156–9.

    Article  PubMed  CAS  Google Scholar 

  125. Kveton JF, Friedman CD, Costantino PD. Indications for hydroxyapatite cement reconstruction in lateral skull base surgery. Am J Otol 1995;16(4):465–9.

    PubMed  CAS  Google Scholar 

  126. Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J Orthop Res 1996;14(5):786–93.

    Article  PubMed  CAS  Google Scholar 

  127. Goodman SB, Bauer TW, Carter D, Casteleyn PP, Goldstein SA, Kyle RF et al. Norian SRS cement augmentation in hip fracture treatment. Laboratory and initial clinical results. Clin Orthop 1998;348: 42–50.

    PubMed  Google Scholar 

  128. Kopylov P, Jonsson K, Thorngren KG, Aspenberg P. Injectable calcium phosphate in the treatment of distal radial fractures. J Hand Surg [Br] 1996;21(6):768–71.

    Article  CAS  Google Scholar 

  129. Kopylov P, Runnqvist K, Jonsson K, Aspenberg P. Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. Acta Orthop Scand 1999;70(1):1–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Lu, J. (2004). Orthopedic Bone Cements. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics