Fractures in Children

  • A. Kusaba
  • S. Saito
Chapter

Abstract

Management of fractures in children is completely different from those in adults. The biological reaction to fracture is characteristic in children because of the anatomic, physiological, and biomechanical properties of skeletal structure. Comprehension of the property of bone in children is essential to treat fractures. Some properties act favorably for bone union and some make it difficult to treat the fractures.

Keywords

Porosity Radium Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deppermann F, Dallek M, Meenen N, Lorke D, Jungbluth KH. The biomechanical significance of the periosteum for the epiphyseal groove (Die biomechanische Bedeutung des Periosts fur die Epiphysenfuge) Unfallchirurgie 1989;15:165–73.PubMedGoogle Scholar
  2. 2.
    Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Joint Surg 1963;45A:587–622.Google Scholar
  3. 3.
    Boot AM, de Ridder MA, Pols HA, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 1997;82:57–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Rang M. Children’s Fractures (2nd ed). Philadelphia: Lippincott, 1983.Google Scholar
  5. 5.
    Currey JD, Butler G. The mechanical properties of bone tissue in children. Bone and Bones. J Bone Joint Surg 1975;57A:810–4.PubMedGoogle Scholar
  6. 6.
    Mabrey JD, Fitch RD. Plastic deformation in pediatric fractures: mechanism and treatment. J Pediatr Orthop 1989;9:310–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Connolly JF. Torsional fractures and the third dimension of fracture management. South Med J 1980;73: 884–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Borden S 4th. Roentgen recognition of acute plastic bowing of the forearm in children. Am J Roentgenol Radium Ther Nucl Med 1979;125:524–30.CrossRefGoogle Scholar
  9. 9.
    Wilkins KE. The incidence of fractures in children. In: Rockwood CA, Wilkins KE, Beaty JH, editors. Fractures in Children, 4th. ed. Philadelphia: Lippincott-Raven, 1996;3–15.Google Scholar
  10. 10.
    Ogden JA. Injury to the growth mechanisms of the immature skeleton. Skeletal Radiol 1981;6:237–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim WC. Biomechanical properties of growth plate. J Jpn Paed Orthop Ass 1996;6:128–32.Google Scholar
  12. 12.
    Nakada D. Torsional strength of the epiphyseal plate and fracture patterns with aging, three-dimensional analysis with SEM. J Jpn Orthop Assoc 1993;67:1045–54.Google Scholar
  13. 13.
    Williams JL, Vani JN, Eick JD, Petersen EC, Schmidt TL. Shear strength of the physis varies with anatomic location and is a function of modulus, inclination and thickness. J Orthop Res 1999;17:214–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Bright RW, Virginia R, Burstein AH. Epiphyseal-Plate Cartilage. J Bone Joint Surg 1974;56A:688–703.PubMedGoogle Scholar
  15. 15.
    Amamilo SC, Bader DL, Houghton GR. The periosteum in growth plate failure. Clin Orthop 1985;194:293–305.PubMedGoogle Scholar
  16. 16.
    Saito S, Kuroki Y, Uchida T, Mori Y. Experimentelle Untersuchungen ueber Entstehung der Antetorsion am Femur. Z Orthop 1980;118:612.Google Scholar
  17. 17.
    Husby OS. Spontaneous correction of femoral torsion. Acta Orthop Scand 1987;58:113–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Oberhammer J. Degree and frequency of rotational deformities after infant femoral fractures and their spontaneous correction. Arch Orthop Traum Surg 1980; 7:249–55.CrossRefGoogle Scholar
  19. 19.
    Uchida T, et al. Experimental study of femoral torsion -spontaneous correction of torsional deformity after femoral fracturs. Seikeigeka kisokagaku 1986; 13:459–61.Google Scholar
  20. 20.
    Wakita M et al. A study of the projection method of the femur. J Jpn Orthop Assoc 1988;62:1374.Google Scholar
  21. 21.
    Wakita M. Fundamental and clinical studies of the projection method of the femur. Showa Univ J Med Sci 1996;56:140–52.Google Scholar
  22. 22.
    Treharne RW. Review of Wolff’s law and its proposed means of operations. Orthop Review 1981;10:35Google Scholar
  23. 23.
    Abraham E. Remodeling potential of long bones following angular osteotomies. J Pediatr Orthop 1989;9: 37–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Karaharju EO, Ryoppy SA, Makinen RJ. Remodelling by asymmetrical epiphysial growth. An experimental study in dogs. J Bone Joint Surg 1976;58B: 122–6.Google Scholar
  25. 25.
    Davids JR, Maguire MF, Mubarak SJ, Wenger DR. Lateral condylar fracture of the humerus following post-traumatic cubitus varus. J Pediatr Orthop 1994; 14: 466–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Saito S, Kuroki Y, Ohgiya H, Marutani R, Obara S, Hayashi J et al. Changes in the alignment of the lower extremities in children — A study of the cases with fractures of the femur and congenital dislocation of the hip. J Jpn Paed Orthop Ass 1993;3:148–56.Google Scholar
  27. 27.
    Saito S, Kurisaki K, Omata T. A study of fractures among children less than 5 years. The Showa University Journal of Medical Science 1997;9:11–15.Google Scholar
  28. 28.
    Glorion C, Pouliquen JC, Langlais J, Ceolin JL, Kassis B. Femoral lengthening by callotasis. A study of a series of 79 cases in children and adolescents (Alongement de femur par callotasis. Etude d’une série de 79 cas chez l’enfant et l’adolescent.). Rev Chir Orthop Réparatrice Appar Mot 1975;81:147–56.Google Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • A. Kusaba
  • S. Saito

There are no affiliations available

Personalised recommendations