Skip to main content

Abstract

Ceramic is defined as “synthesized inorganic, solid, crystalline materials, excluding metals”. Ceramics, used as biomaterials to fill defects in tooth and bone, to fix bone grafts, fractures, or prostheses to bone, and to replace diseased tissue, are called bioceramics. They must be highly biocompatible and antithrombogenic, and should not be toxic, allergenic, carcinogenic, or teratogenic. Bioceramics can be classified into three groups; (1) bioinert ceramics, (2) bioactive ceramics, and (3) bioresorbable ceramics. Bioinert ceramics have a high chemical stability in vivo as well as high mechanical strength as a rule, and when they are implanted in living bone, they are incorporated into the bone tissue in accordance with the pattern of “contact osteogenesis”. On the other hand, bioactive ceramics have the character of osteo-conduction and the capability of chemical bonding with living bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson J. Presurvey on biomaterial application of carbons. North American Rockwell, Rocketdyne Report R-7855, 1969.

    Google Scholar 

  2. Yamamuro T, Kotoura Y, Kasahara K, Takahashi M, Abe M. Intraoperative radiotherapy and ceramic prosthesis replacement for osteosarcoma. In: Yamamuro T, editor. New development for limb salvage in musculoskeletal tumors. Tokyo: Springer Verlag, 1989;327–36.

    Chapter  Google Scholar 

  3. Boutin P, Blanquaert D. Le frottement alumine-alumine en chirurgie de la hanche 1,205 arthroplasties totales: avril 1970-juin 1980. Rev Chir Orthop 1981;67: 279–87.

    PubMed  CAS  Google Scholar 

  4. Sedel L. Evolution of alumina-on-alumina implants. Clin Orthop Rel Res 2000;379:48–54.

    Article  Google Scholar 

  5. Cales B, Peille CN. Radioactive properties of ceramic hip implants. Bioceramics 1988;1:152–5.

    Google Scholar 

  6. Yamamuro T. Zirconia ceramic for the femoral head of a hip prosthesis. In: Sedel L, Cabanela ME, editors. Hip surgery, materials and development. London: Martin Duntz, 1998;41–4.

    Google Scholar 

  7. Yamamuro T. A new model of bone-conserving cementless hip prosthesis made of high-tech materials: Kobelco H-5. In: Imura S, Wada M, Omori H, editors. Joint arthroplasty. Tokyo: Springer Verlag, 1990;213–24.

    Google Scholar 

  8. Hench LL, Greenlee TK Jr, Allen WC, Piotrowski G. U.S. Army Research and Development Command, Contract No. DADA 17–70-C-0001, University of Florida, Gainesville, 1970.

    Google Scholar 

  9. Wilson J, Pigott GH, Schoen FJ, Hench LL. Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 1981;15:805–17.

    Article  PubMed  CAS  Google Scholar 

  10. Aoki H, Shin Y, Akao M, Tsuji T, Togawa T, Ukegawa Y, Kikuchi R. Sintered hydroxyapatite for a percutaneous device. In: Christel P, Meunier A, Lee AJC, editors. Biological and biomechanical performances of bio-materials. Amsterdam: Elsevier, 1966;1–3.

    Google Scholar 

  11. Jarcho M, Bolen CH, Thomas MB, Nobick J, Kay JF, Doremus RH. Hydroxyapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 1976; 11:2027–34.

    Article  CAS  Google Scholar 

  12. Geesink RGT, de Groot K, Klein CPAT. Chemical implant fixation using hydroxyl-apatite coatings: the development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coating on titanium substrates. Clin Orthop Rel Res 1987;225:147–70.

    CAS  Google Scholar 

  13. Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T, et al. Apatite- and wollastonite-containing glass-ceramic for prosthetic application. Bull Inst Chem Res Kyoto Univ 1982;60:260–8.

    CAS  Google Scholar 

  14. Neo M, Kotani S, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T, Bando Y. A comparative study of ultrastrc-tures of the interface between four kinds of surface-active ceramic and bone. J Biomed Mater Res 1992;26:1419–32.

    Article  PubMed  CAS  Google Scholar 

  15. Kokubo T. Bonding mechanism of bioactive glass-ceramic A-W to living bone. In: Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics, Vol. 1: Bioactive glasses and glass-ceramics, Boca Raton: CRC Press, 1990;41–9.

    Google Scholar 

  16. Yamamuro T, Shikata J, Okumura H, Kitsugi T, Kakutani Y, Matsui T, Kokubo T. Replacement of the lumbar vertebrae of sheep with ceramic prosthesis. J Bone Joint Surg 1990;72-B:889–93.

    Google Scholar 

  17. Yamamuro T. A/W glass-ceramic: Clinical applications. In: Hench LL, Wilson J, editors. An introduction to bioceramics, Singapore: World Scientific, 1993;89–103.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Yamamuro, T. (2004). Bioceramics. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics