Advertisement

Wound Healing: Potential Therapeutic Modulation

  • W. H. Akeson
  • A. Giurea
Chapter

Abstract

Injury invokes a vigorous healing response in soft tissue as it does in bone. The needs of individual survival undoubtedly required such an evolutionary response as a survival mechanism. Inevitably the control mechanisms of the healing response will not infrequently extend beyond the range of the ideal. When the response to soft tissue injury is excessively exuberant, complications are encountered such as keloid formation, peritoneal adhesion, intestinal stricture, tendon adhesion, epidural fibrosis, and arthrofibrosis with attendant joint contractures, to name just a few. An important case in point is the loss of range of motion which occurs occasionally after knee injuries or knee surgery in spite of seemingly appropriate initial management and subsequent rehabilitation.

Keywords

Anterior Cruciate Ligament Wound Repair Fetal Healing Epidural Fibrosis Fetal Wound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schall T, Bacon K. Chemokines, leukocyte trafficking and inflammation. Curr Op Im 1994;6:865–73.CrossRefGoogle Scholar
  2. 2.
    von Andrian UJ. Chambers L, McEvoy R, Bargatze K, Arfors, Butcher E. Two-step model of leukocyte-endothelial cell interaction in inflammation. Proc Nat Acad Sci, USA 1991;88:7538–42.CrossRefGoogle Scholar
  3. 3.
    Border WN, Noble T, Yamamoto S, Tomooka, Kagami S. Antagonists to TGF-beta: Treatment of glomeru-lonephrities and preventionof glomerulosclerosis. Kidney Int 1992;41:566–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Pober J, Cotran R. The role of endothelial cells in inflammation. Transplantation 1990;50:537–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith C. Endothelial adhesion molecules and their role in inflammation. Can J Physiol Pharmacol 1993;71: 76–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Muller WS, Weigl X, Deng, Phillips D. PECAM-1 is required for transendothelial migration of leukocytes. Jf Exp Med 1993;178:449–60.CrossRefGoogle Scholar
  7. 7.
    Webb LM, Ehrengruber I, Clark-Lewis M, Baggiolini, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA 1993;90:7158–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Witt D, Lander A. Differential vinding of chemokines to glycosaminoglycan subpopulations. Curr Biol 1994;4:394–400.PubMedCrossRefGoogle Scholar
  9. 9.
    Weyrich AX, Ma D, Lefer K, Albertine, Lefer A. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest 1993;91:2610–29.CrossRefGoogle Scholar
  10. 10.
    Hernandez-Pando R, Orozco H, Arriaga K, Sampieri A, Larriva-Sahd J, Madrid-Marina V. Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis. Immunology 1997;90:607–17.PubMedCrossRefGoogle Scholar
  11. 11.
    IBC Int Conf on therapeutic advances in fibrosis. 1996, Washington, DC.Google Scholar
  12. 12.
    Akeson WHD, Amiel GL, Mechanic SL, Woo FL, Harwood, Hamer ML. Collagen cross-linking alterations in joint contractures: changes in the reducible cross-links in periarticular connective tissue collagen after nine weeks of immobilization. Connect Tissue Res 1997;5:15–19.CrossRefGoogle Scholar
  13. 13.
    Butcher E. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 1991;67:1033–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Collins T. Adhesion molecules in leukocyte emigration. Sci Am Sci Med 1995;Nov/Dec:28–37.Google Scholar
  15. 15.
    Schall T, Bacon K. Chemokines, leukocyte trafficking and inflammation. Curr Op Im 1994;6:865–73.CrossRefGoogle Scholar
  16. 16.
    Burrington J. Wound healing in the fetal lamb. Jl Pediatr Surg 1971;6:523–8.CrossRefGoogle Scholar
  17. 17.
    Cass DL, Bullard KM, Sylvester KG, Yang, EY Longaker MT, Adzick NS. Wound size and gestational age modulate scar formation in fetal wound repair. J Pediatr Surg 1997;32:411–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Ioncono JH, Ehrlich K, Keefer, Krummel T. Hyalluro-nan induces scarless repair in mouse limb organ culture. J Pediatr Surg 1998;33:546–7.Google Scholar
  19. 19.
    DePalma R, Krummel T, Durham L, Michna B, Thomas B, Nelson J et al. Characterization and quantitation of wound matrix in the fetal rabbit. Matrix 1989;9:224–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Cabrera R, Siebert J, Eidelman Y, Gold L, Langaker M, Garg H. The in vivo effect of hyaluronan associated protein-collagen complex on wound repair. Biochem Molec Biol Int 1995;37:151–8.PubMedGoogle Scholar
  21. 21.
    Freund R, Siebert J, Carera R, Longaker M, Eidelman Y, Adzick N et al. Serial quantitation of hyaluronan and sulfated glycosaminoglycans in fetal sheep skin. Bioch Molec Biol Int 1993;29:773–83.Google Scholar
  22. 22.
    Shepard S, Becker H, Hartman L. Using hyaluronic acid to create a fetal-like environment in vitro. Ann Plastic Surg 1996;36:65–9.CrossRefGoogle Scholar
  23. 23.
    West DC, Shaw DM, Lorenz P, Adzick NS, Longaker MT. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int J Biochem Cell Biol 1997;29:201–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Alaish S, Yager D, Diegelmann R, Cohen I. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J Pediatr Surg 1994;29:1040–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Whitby DJ. The extracellular matrix of lip wounds in fetal neonatal and adult mice. Development 1991; 12: 651–68.Google Scholar
  26. 26.
    Whitby DJ. Immunohistochemical localization of growth factors in fetal wound healing. Devel Biol 1991;147:207–15.CrossRefGoogle Scholar
  27. 27.
    Shah M, Foreman D, Ferguson M. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995;108:985–1002.PubMedGoogle Scholar
  28. 28.
    Adzick NS. Fetal Wound Healing. New York: Elsevier, 1991.Google Scholar
  29. 29.
    Stelnicki EJ, Bullard KM, Harrison MR, Cass DL, Adzick NS. A new in vivo model for the study of fetal wound healing. Ann Plast Surg 1997;39:374–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Ioncono J, Krummel T, Keefer K, Allison G, Paul H. Repeated additions of hyaluronan alters granulation tissue deposition in sponge implants in mice. Wound Repair Regen 1998;6:442–8.CrossRefGoogle Scholar
  31. 31.
    Namba RS, Meuli M, Sullivan KM, Le AX, Adzick NS. Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Joint Surg Am 1998;80:4–10.PubMedGoogle Scholar
  32. 32.
    Mackool RJ, Gittes GK, Longaker MT. Scarless healing. The fetal wound. Clin Plast Surg 1998;25:357–65.PubMedGoogle Scholar
  33. 33.
    Cowin AJ, Brosnan MP, Holmes TM, Ferguson MW. Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev Dyn 1998;212:385–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Coleman C, Tuan TL, Buckley S, Anderson KD, Warburton D. Contractility, transforming growth factor-beta, and plasmin in fetal skin fibroblasts: role in scarless wound healing. Pediatr Res 1998;43: 403–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Irwin CR, Myrillas T, Smyth M, Doogan J, Rice C, Schor SL. Regulation of fibroblast-induced collagen gel contraction by interleukin-lbeta. J Oral Pathol Med 1998;27:255–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Bullard KM, Banda MJ, Adzick NS. Transforming gowth factor beta-1 decreases interstitial collagenase in healing human fetal skin. J Ped Surg 1997;32: 1023–7.CrossRefGoogle Scholar
  37. 37.
    Gallivan BA, Moriarty KP, Pajerski ME, O’Donnell C, Crombleholme TM. Differential collagen 1 gene expression in fetal fibroblasts. J Ped Surg 1997;32:1033–6.CrossRefGoogle Scholar
  38. 38.
    Loworn HN 3rd, Cheung DT, Nimni ME, Perelman N, Estes JM, Adzick NS. Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J Pediatr Surg 1999;34:218–23.CrossRefGoogle Scholar
  39. 39.
    Liechty KW, Crombleholme TM, Cass DL, Martin B, Adzick NS. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res 1998;77:80–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Olutoye OO, Barone EJ, Yager DR, Uchida T, Cohen IK, Diegelmann RE Hyaluronic acid inhibits fetal platelet function: implications in scarless healing. J Pediatr Surg 1997;32:1037–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Cass DL, Bullard KM, Sylvester KG, Yang EY, Sheppard D, Herlyn M et al. Epidermal integrin expression is upregulated rapidly in human fetal wound repair. J Pediatr Surg 1998;33:312–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Entwistle J, Hall CL, Turley EA. HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem 1996;61:569–77.PubMedCrossRefGoogle Scholar
  43. 43.
    Naot D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res 1997;71:241–319.CrossRefGoogle Scholar
  44. 44.
    Asari A, Morita M, Sekiguchi T, Okamura K, Horie K, Miyauchi S. Hyaluronan, CD44 and fibronectin in rabbit corneal epithelial wound healing. Jpn J Ophthalmol 1996;40:18–25.PubMedGoogle Scholar
  45. 45.
    Rudzki Z, Jothy S. CD44 and the adhesion of neoplastic cells. Mol Pathol 1997;50:57–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Shyjan AM, Heldin P, Butcher EC, Yoshino T, Briskin MJ. Functional cloning of the cDNA for a human hyaluronan synthase. J Biol Chem 1996;271:23395–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang C, Entwistle J, Hou G, Li Q, Turley EA. The characterization of a human RHAMM cDNA: conservation of the hyaluronan-binding domains. Gene 1996; 174:299–306.PubMedCrossRefGoogle Scholar
  48. 48.
    Greco RM, Iocono JA, Ehrlich HP. Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J Cell Physiol 1998;177:465–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Shepard S, Becker H, Hartmann JX. Using hyaluronic acid to create a fetal-like environment in vitro. Ann Plast Surg 1996;36:65–9.PubMedCrossRefGoogle Scholar
  50. 50.
    McKee, CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest 1996;98:2403–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Lees, VC, Fan TP, West DC. Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosaccharides of hyaluronan. Lab Invest 1995;73: 259–66.PubMedGoogle Scholar
  52. 52.
    Hodge-Dufour J, Noble PW, Horton MR, Bao C, Wysoka M, Burdick MD et al. Induction of IL-12 and chemokines by hyaluronan requires adhesion-dependent priming of resident but not elicited macrophages. J Immunol 1997;159:2492–500.PubMedGoogle Scholar
  53. 53.
    Deed R, Rooney P, Kumar P, Norton JD, Smith J, Freemont AJ et al. Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Int J Cancer 1997; 71:251–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Hall C, Laange L, Prober D, Zhang S, Turley E. pp60 (c-src) is required for cell locomotion regulated by the hyaluronan receptor RHAMM. Oncogene 1996; 13: 2213–24.PubMedGoogle Scholar
  55. 55.
    Amara FM, Entwistle J, Kuschak TI, Turley EA, Wright JA. Transforming growth factor-betal stimulates multiple protein interactions at a unique cis-element in the 3′-untranslated region of the hyaluronan receptor RHAMM mRNA. J Biol Chem 1996;271:15279–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Amiel D, Frey C, Woo SL, Harwood F, Akeson W. Value of hyaluronic acid in the prevention of contracture formation. Clin Orthop Related Res 1985; 196:306–11.Google Scholar
  57. 57.
    Waters SN, Massie JB, Amiel D, Akeson WH. A role for anti-fibrotics in the prevention of epidural fibrosis. Proc Orthop Res Soc 2000;0071, Mar 12–15.Google Scholar
  58. 58.
    Tamaki K, Okuda S, Miyazono K, Nakayama M, Fujishima M. Matrix-associated latent TGF-beta with latent TGF-beta binding protein in the progressive process in adriamycin-induced nephropathy. Lab Invest 1995;73:81–9.PubMedGoogle Scholar
  59. 59.
    Bottinger EP, Factor VM, Tsang ML, Weatherbee JA, Kopp JB, Qian SW et al. The recombinant proregion of transforming growth factor betal (latency-associated peptide) inhibits active transforming growth factor betal in transgenic mice. Proc Natl Acad Sci USA 1996;93:5877–82.PubMedCrossRefGoogle Scholar
  60. 60.
    Davidson J. Cell biology of tissue repair and fibrosis. In IBC Int Conf on Therapeutic Advances in Fibrosis, Washington DC, 1996.Google Scholar
  61. 61.
    Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH. Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res 1992; 10: 465–75.PubMedCrossRefGoogle Scholar
  62. 62.
    Schreck PJ, Kitabayashi LR, Amiel D, Akeson WH, Woods VL Jr. Integrin display increases in the wounded rabbit medial collateral ligament but not the wounded anterior cruciate ligament. J Orthop Res 1995;13: 174–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Geiger MH, Green MH, Monosov A, Akeson WH, Amiel D. An in vitro assay of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cell migration. Connect Tissue Res 1994;30:215–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Amiel D, Kuiper SD, Wallace CD, Harwood FL, VandeBerg JS. Age-related properties of medial collateral ligament and anterior cruciate ligament: a morphologic and collagen maturation study in the rabbit. J Gerontol 1991;46:B159–65.PubMedCrossRefGoogle Scholar
  65. 65.
    Albelda S, Smith C, Ward P. Adhesion molecules and inflammation Injury. The FASEB Journal 1994;8: 504–12.Google Scholar
  66. 66.
    Kavanaugh A, Heudebert G, Cush J, Jain R. Cost evaluation of novel therapeutics in rheumatoid arthritis (CENTRA). Seminars in Arthritis and Rheumatism 1995;25:1–12.CrossRefGoogle Scholar
  67. 67.
    Shah M, Whitby D, Ferguson M. Fetal wound healing and scarless surgery. In: Jackson D, Sommerlad B, editors. Recent Advances in Plastic Surgery. Vol. 5. Edinburgh: Churchill Livingstone, 1996.Google Scholar
  68. 68.
    Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med 1994; 180: 1587–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Weber IT, Harrison RW, Iozzo RV. Model structure of decorin and implications for collagen fibrillogenesis. J Biol Chem 1996;271:31767–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Kresse H, Liszio C, Schonherr E, Fisher LW. Critical role of glutamate in a central leucine-rich repeat of decorin for interaction with type I collagen. J Biol Chem 1997;272:18404–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I. Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem 1999;274:4489–92.PubMedCrossRefGoogle Scholar
  72. 72.
    Munz C, Naumann U, Grimmel C, Rammensee HG, Weller M. TGF-beta-independent induction of immunogenicity by decorin gene transfer in human malignant glioma cells. Eur J Immunol 1999;29: 1032–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Olsson U, Bondjers G, Camejo G. Fatty acids modulate the composition of extracellular matrix in cultured human arterial smooth muscle cells by altering the expression of genes for proteoglycan core proteins. Diabetes 1999;48:616–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Okamoto O, Fujiwara S, Abe M, Sato Y. Dermatopontin interacts with transforming growth factor beta and enhances its biological activity. Biochem J 1999;337: 537–41.PubMedCrossRefGoogle Scholar
  75. 75.
    Stander M, Naumann U, Dumitrescu L, Heneka M, Loschmann P, Gulbins E et al. Decorin gene transfer-mediated suppression of TGF-beta synthesis abrogates experimental malignant glioma growth in vivo. Gene Ther 1998;5:1187–94.PubMedCrossRefGoogle Scholar
  76. 76.
    Khanna A, Li B, Li P, Suthanthiran M. Transforming growth factor-beta 1: regulation with a TGF-beta 1 antisense oligomer. Kidney Int Suppl 1996;53:S2–6.PubMedGoogle Scholar
  77. 77.
    Redington AE, Roche WR, Holgate ST, Howarth PH. Co-localization of immunoreactive transforming growth factor-beta 1 and decorin in bronchial biopsies from asthmatic and normal subjects. J Pathol 1998; 186: 410–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Schonherr E, Broszat M, Brandan E, Bruckner P, Kresse H. Decorin core protein fragment Leu 155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen. Arch Biochem Biophys 1998;355:241–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Asakura S, Kato H, Fujino S, Konishi T, Tezuka N, Mori A. Role of transforming growth factor-beta 1 and decorin in development of central fibrosis in pulmonary adenocarcinoma. Hum Pathol 1999;30: 195–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Mogyorosi A, Ziyadeh FN. Increased decorin mRNA in diabetic mouse kidney and in mesangial and tubular cells cultured in high glucose. Am J Physiol 1998;275: F827–32.PubMedGoogle Scholar
  81. 81.
    Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y. Degradation of decorin by matrix metallo-proteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta 1 release. Biochem J 1997;322:809–14.PubMedGoogle Scholar
  82. 82.
    Roughley PJ, White RJ, Mort JS. Presence of pro-forms of decorin and biglycan in human articular cartilage. Biochem J 1996;318:779–84.PubMedGoogle Scholar
  83. 83.
    Ehnis T, Dieterich W, Bauer M, Lampe B, Schuppan D. A chondroitin/dermatan sulfate form of CD44 is a receptor for collagen XIV (undulin). Exp Cell Res 1996;229:388–97.PubMedCrossRefGoogle Scholar
  84. 84.
    Mauviel A, Santra M, Chen YQ, Uitto J, Iozzo RV. Transcriptional regulation of decorin gene expression. Induction by quiescence and repression by tumor necrosis factor-alpha. J Biol Chem 1995;270:11692–700.PubMedCrossRefGoogle Scholar
  85. 85.
    Kuroda K, Shinkai H. Decorin and glycosaminoglycan synthesis in skin fibroblasts from patients with systemic sclerosis. Arch Dermatol Res 1997;289:481–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Demoor-Fossard M, Redini F, Boittin M, Pujol JP. Expression of decorin and biglycan by rabbit articular chondrocytes. Effects of cytokines and pheno-typic modulation. Biochim Biophys Acta 1998; 1398: 179–91.PubMedCrossRefGoogle Scholar
  87. 87.
    Kolettas E, Rosenberger RE Suppression of decorin expression and partial induction of anchorage-independent growth by the v-src oncogene in human fibroblasts. Eur J Biochem 1998;254:266–74.PubMedCrossRefGoogle Scholar
  88. 88.
    Brown C, Nugent M, Lau F, Trinkaus-Randall V. Characterizationof proteoglycans synthesized by cultured coneal fibroblasts in response to transfoming growth factor-beta and fetal calf serum. Journal of Biological Chemistry 1999;274:7111–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Nakamura N, Timmermann SA, Hart DA, Kaneda Y, Shrive NG, Shino K et al. A comparison of in vivo gene delivery methods for antisense therapy in ligament healing. Gene Ther 1998;5:1455–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Peters H, Noble NA, Border WA. Transforming growth factor-beta in human glomerular injury. Curr Opin Nephrol Hypertens 1997;6:389–93.PubMedCrossRefGoogle Scholar
  91. 91.
    Giri SN, Hyde DM, Braun RK, Gaarde W, Harper JR, Pierschbacher MD. Antifibrotic effect of decorin in a bleomycin hamster model of lung fibrosis. Biochem Pharmacol 1997;54:1205–16.PubMedCrossRefGoogle Scholar
  92. 92.
    Hirsch CS, Ellner JJ, Blinkhorn B, Toossi Z. In vitro restoration of T cell responses in tuberculosis and augmentation of monocyte effector function against Mycobacterium tuberculosis by natural inhibitors of transforming growth factor beta. Proc Natl Acad Sci USA 1997;94:3926–31.PubMedCrossRefGoogle Scholar
  93. 93.
    Yokoyama H, Deckert T. Central role of TGF-beta in the pathogenesis of diabetic nephropathy and macro-vascular complications: a hypothesis. Diabet Med 1996; 13:313–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Henke C, Bitterman P, Roongta U, Ingbar D, Polunovsky V. Induction of fibroblast apoptosis by anti-CD44 antibody: implications for the treatment of fibroproliferative lung disease. Am J Pathol 1996; 149: 1639–50.PubMedGoogle Scholar
  95. 95.
    Gilcreast, DM, Stotts NA, Froelicher ES, Baker LL, Moss KM. Effect of electrical stimulation on foot skin perfusion in persons with or at risk for diabetic foot ulcers. Wound Repair Regen 1998;6:434–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Pinzur MS, Slovenkai MP, Trepman E. Guidelines for diabetic foot care. The Diabetes Committee of the American Orthopaedic Foot and Ankle Society. Foot Ankle Int 1999;20:695–702.PubMedCrossRefGoogle Scholar
  97. 97.
    Daniels TR. Diabetic foot ulcerations: an overview. Ostomy Wound Manage 1998;44:76–80, 82, 84; quiz 85–6 passim.PubMedGoogle Scholar
  98. 98.
    Armstrong DG, Harkless LB. Outcomes of preventative care in a diabetic foot specialty clinic. J Foot Ankle Surg 1998;37:460–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Margolis DJ, Kantor J, Berlin JA. Healing of diabetic neuropathic foot ulcers receiving standard treatment. A meta-analysis. Diabetes Care 1999;22:692–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Kalani M, Brismar K, Fagrell B, Ostergren J, Jorneskog G. Transcutaneous oxygen tension and toe blood pressure as predictors for outcome of diabetic foot ulcers. Diabetes Care 1999;22:147–51.PubMedCrossRefGoogle Scholar
  101. 101.
    Abbott CA, Vileikyte L, Williamson S, Carrington AL, Boulton AJ. Multicenter study of the incidence and predictive risk factors for diabetic neuropathic foot ulceration. Diabetes Care 1998;21:1071–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Mason J, O’Keeffe C, Mcintosh A, Hutchinson A, Booth A, Young RJ. A systematic review of foot ulcer in patients with Type 2 diabetes mellitus. I: prevention. Diabet Med 1999;16:801–12.PubMedCrossRefGoogle Scholar
  103. 103.
    Mitton C, Hailey. D Health technology assessment and policy implicatiions of hyperbaric oxygen treatment [abstract]. Annual Meeting of International Society of Technology Assessment in Health Care 1999; 15:140.Google Scholar
  104. 104.
    Kloth LC, McCulloch JM. Promotion of wound healing with electrical stimulation. Adv Wound Care 1996;9: 42–5.PubMedGoogle Scholar
  105. 105.
    Schindl A, Schindl M, Pernerstorfer-Schon H, Kerschan K, Knobler R, Schindl L. Diabetic neuropathic foot ulcer: successful treatment by low-intensity laser therapy. Dermatology 1999;198:314–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Allenet B, Parée F, Lebrun T, Carr L, Posnett J, Martini J et al. Cost-effectiveness modeling of Dermagraft for the treatment of diabetic foot ulcers in the French context. Diabetes Metab 2000;26:125–32.PubMedGoogle Scholar
  107. 107.
    Harvima IT, Virnes S, Kauppinen L, Huttunen M, Kivinen P, Niskanen L et al. Cultured allogeneic skin cells are effective in the treatment of chronic diabetic leg and foot ulcers. Acta Derm Venereol 1999;79: 217–20.PubMedCrossRefGoogle Scholar
  108. 108.
    Donaghue VM, Chrzan JS, Rosenblum BI, Giurini JM, Habershaw GM, Veves A. Evaluation of a collagen-alginate wound dressing in the management of diabetic foot ulcers. Adv Wound Care 1998;11:114–9.PubMedGoogle Scholar
  109. 109.
    Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower-extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 1999;7:335–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Embil JM, Papp K, Sibbald G, Tousignant J, Smiell JM, Wong B et al. Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower-extremity diabetic ulcers: an open-label clinical evaluation of efficacy. Wound Repair Regen 2000;8: 162–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Miller MS. Use of topical recombinant human platelet-derived growth factor-BB (becaplermin) in healing of chronic mixed arteriovenous lower-extremity diabetic ulcers. J Foot Ankle Surg 1999;38:227–31.PubMedCrossRefGoogle Scholar
  112. 112.
    Rees RS, Robson MC, Smiell JM, Perry BH. Becaplermin gel in the treatment of pressure ulcers: a phase II randomized, double-blind, placebo-controlled study. Wound Repair Regen 1999;7:141–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Castronuovo JJ Jr, Ghobrial I, Giusti AM, Rudolph S, Smiell JM. Effects of chronic wound fluid on the structure and biological activity of becaplermin (rhPDGF-BB) and becaplermin gel. Am J Surg 1998; 176:61S-67S.PubMedCrossRefGoogle Scholar
  114. 114.
    Smiell JM Clinical safety of becaplermin (rhPDGF-BB) gel. Becaplermin Studies Group. Am J Surg 1998; 176: 68S-73S.PubMedCrossRefGoogle Scholar
  115. 115.
    Wieman TJ. Clinical efficacy of becaplermin (rhPDGF-BB) gel. Becaplermin Gel Studies Group. Am J Surg 1998;176:74S-79S.PubMedCrossRefGoogle Scholar
  116. 116.
    Robson MC, Hill DP, Smith PD, Wang X, Meyer-Siegler K, Ko F et al. Sequential cytokine therapy for pressure ulcers: clinical and mechanistic response. Ann Surg 2000;231:600–11.PubMedCrossRefGoogle Scholar
  117. 117.
    Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR. Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 1995;107:233–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Remes K, Ronnemaa T. Healing of chronic leg ulcers in diabetic necrobiosis lipoidica with local granulocyte-macrophage colony stimulating factor treatment. J Diabetes Complications 1999;13:115–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Harris IR, Yee KC, Walters CE, Cunliffe WJ, Kearney JN, Wood EJ. Cytokine and protease levels in healing and non-healing chronic venous leg ulcers. Exp Dermatol 1995;4:342–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Trengove NJ, Bielefeldt-Ohmann H, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen 2000;8:13–25.PubMedCrossRefGoogle Scholar
  121. 121.
    Kuhn MA, Smith PD, Hill DP, Ko F, Meltzer DD, Vande Berg JS et al. In vitro fibroblast populated collagen lattices are not good models of in vivo clinical wound healing. Wound Repair Regen 2000;8:270–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Chen C, Schultz GS, Bloch M, Edwards PD, Tebes S, Mast BA. Molecular and mechanistic validation of delayed healing rat wounds as a model for human chronic wounds. Wound Repair Regen 1999;7:486–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • W. H. Akeson
  • A. Giurea

There are no affiliations available

Personalised recommendations