An Introduction to the Endopeptidases

  • A. J. Barrett
Part of the Current Topics in Rehabilitation book series (CURRENT REHAB)


A very large number of proteolytic enzymes exist in the human body, and it is no easy matter to work out how they are involved in specific physiological and pathological processes. A concept that has proved helpful in this is that of splitting the enzymes into groups on the basis of (a) the type of reaction that they catalyse and (b) the chemical mechanism of catalysis that they use.


Neutrophil Elastase Pulmonary Emphysema Extracellular Activity Mercuric Acetate Human Neutrophil Elastase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett A.J., McDonald J.K.: Nomenclature: protease, proteinase and peptidase. Biochem. J. 1986; 237: 935PubMedGoogle Scholar
  2. 2.
    Barrett A.J.: Introduction: the classification of proteinases. In: Evered D., Whelan J., (Eds.): Protein Degradation in Health and Disease (Ciba Foundation Symposium 75), Amsterdam, Excerpta Medica, 1980: 1–13Google Scholar
  3. 3.
    Barrett A.J.: A trap for proteinases. Current Contents 1989; 32 (2): 14Google Scholar
  4. 4.
    Farley D., Salvesen G., Travis J.: Molecular cloning of human neutrophil elastase. Biol. Chem. Hoppe-Seyler 1988; 369: 3–7PubMedGoogle Scholar
  5. 5.
    Blow A.M.J.: Action of human lysosomal elastase on the oxidized B chain of insulin. Biochem. J. 1977; 161: 13–16PubMedGoogle Scholar
  6. 6.
    Barrett A.J.: The possible role of neutrophilic proteinases in damage to articular cartilage. Agents Actions 1978; 8: 11–18PubMedCrossRefGoogle Scholar
  7. 7.
    Baricos W.H., Zhou Y., Mason R.V., Barrett A.J.: Human kidney cathepsins B and L. Characterization and potential role in glomerular basement membrane degradation. Biochem. J. 1988; 252: 301–304PubMedGoogle Scholar
  8. 8.
    Chapman H.A. Jr., Stone O.L.: Co-operation between plasmin and elastase in elastin degradation by intact murine macrophages. Biochem. J. 1984; 222: 721–728PubMedGoogle Scholar
  9. 9.
    Kirschke H., Kembhavi A.A., Bohley P., Barrett A.J.: Action of rat liver cathepsin L on collagen and other substrates. Biochem. J. 1982; 201: 367–372PubMedGoogle Scholar
  10. 10.
    Mason R.W., Johnson D.A., Barrett A.J., Chapman H.A.: Elastinolytic activity of human cathepsin L. Biochem. J. 1986; 233: 925–927PubMedGoogle Scholar
  11. 11.
    Johnson D.A., Barrett A.J., Mason R.W.: Cathepsin L inactivates alphal-proteinase inhibitor by cleavage in the reactive site region. J. Biol. Chem. 1986; 261: 14748–14751PubMedGoogle Scholar
  12. 12.
    Buttle D.J., Bonner B.C., Burnett D., Barrett A.J.: A catalytically active high-M form of human cathepsin B from sputum. Biochem. J. 1988; 254: 693–699PubMedGoogle Scholar
  13. 13.
    Barrett A.J.: The cystatins: a new class of peptidase inhibitors. Trends Biochem. Sci. 1987; 12: 193–196Google Scholar
  14. 14.
    Buttle D.J., Burnett D., Abrahamson M.: Levels of cathepsin B activity and cystatins in human sputum: relationship to inflammation. Scand. J. Clin. Lab. Invest. 1990; 50: 509–516PubMedCrossRefGoogle Scholar
  15. 15.
    Abrahamson M., Mason R.W., Hansson H., Grubb A., Buttle D.J. Ohlsson K.: Leukocyte elastase can inactivate the human cysteine proteinase inhibitor, cystatin C, by cleavage of a single N-terminal bond. Biochem. J. 1990; 273: 621–626Google Scholar
  16. 16.
    Murphy G., Ward R., Hembrey R.M., Reynolds J.J., Kühn K., Tryggvason K.: Characterization of gelatinase from pig polymorphonuclear leucocytes. A metalloproteinase resembling tumour type IV collagenase. Biochem. J. 1989; 258: 463–472PubMedGoogle Scholar
  17. 17.
    Senior R.M., Connolly N.L., Cury J.D., Welgus, H.G., Campbell E.J.: Elastin degradation by human alveolar macrophages. A prominent role of metalloproteinase activity. Am. Rev. Respir. Dis. 1989; 139: 1251–1256PubMedCrossRefGoogle Scholar
  18. 18.
    Nagase H., Enghild J.J., Salvesen G.: Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl) mercuric acetate. Biochemistry 1990; 29: 5783–5789PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 1992

Authors and Affiliations

  • A. J. Barrett
    • 1
  1. 1.Department of BiochemistryStrangeways Research LaboratoryCambridgeUK

Personalised recommendations