Skip to main content

Immune Tolerance

  • Chapter
Transplantation Surgery

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

  • 217 Accesses

Abstract

Transplantation has become the treatment of choice for patients suffering from end-stage organ failure. However, successful engraftment is currently dependent on the use of non-specific immunosuppressant agents. As a consequence of this treatment, both beneficial and harmful immune responses produced by the recipient are suppressed. Furthermore, in order to permit long-term graft survival, such drugs must be taken indefinitely after transplantation. Such therapy is associated with immunological complications which include the increased risks of infection and malignancy, as well as numerous non-immunological side effects [1]. Another limitation of the current approach to post-transplant immunotherapy is the all too frequent development of chronic rejection. As an example, 50% of all cadaveric renal allografts surviving at one year are lost within only 12–13 years from this largely untreatable condition. Recent advances in immunotherapy have not resulted in an improvement in such half-life statistics over the last 20 years. The problems of increasing demand for transplantation and increasing numbers of patients returning to the transplant pool with failed grafts are clearly interrelated. Approximately 20% of kidney transplants currently performed go to patients who have failed one or more renal allografts. Taken together, these limitations have provided the rationale for continued basic immunological research into tolerance induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vella JP, Sayegh MH. Current and future immunosuppressive therapies: impact on chronic allograft dysfunction. J Nephrol 1997; 10 (5): 229–31.

    PubMed  CAS  Google Scholar 

  2. Sayegh MH, Fine NA, Smith JL, Rennke HG, Milford EL, Tilney NL. Immunologic tolerance to renal allografts after bone marrow transplants from the same donors [see comments]. Ann Intern Med 1991; 114 (11): 954–5.

    PubMed  CAS  Google Scholar 

  3. Billingham RE, Brent L, Medawar P. Actively acquired tolerance to foreign cells. Nature 1953; 172: 6033.

    Article  Google Scholar 

  4. Sayegh MH, Carpenter CB. Tolerance and chronic rejection. Kidney Int 1997; 51: S8–10.

    Google Scholar 

  5. Sayegh MH, Watschinger B, Carpenter CB. Mechanisms of T cell recognition of alloantigen: the role of peptides. Transplantation 1994; 57: 1295–302.

    Article  PubMed  CAS  Google Scholar 

  6. Sayegh MH, Turka LA. The role of T cell costimulatory activation in transplant rejection. N Engl J Med 1998; 338 (25): 1813.

    Article  PubMed  CAS  Google Scholar 

  7. Ciubotariu R, Liu Z, Colovai AI, Ho E, Itescu S, Ravalli S, et al. Persistent allopeptide reactivity and epitope spreading in chronic rejection of organ allografts. J Clin Invest 1998; 101: 398–405.

    Article  PubMed  CAS  Google Scholar 

  8. Vella JP, Spadafora-Ferreira M, Murphy B, Alexander SI, Harmon W, Carpenter CB, et al. Indirect allorecognition of major histocompatibility complex allopeptides in human renal transplant recipients with chronic graft dysfunction. Transplantation 1997; 64 (6): 795–800.

    Article  PubMed  CAS  Google Scholar 

  9. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970; 169: 1042–9.

    Article  PubMed  CAS  Google Scholar 

  10. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 1993; 259 (5097): 990–3.

    Article  PubMed  CAS  Google Scholar 

  11. Larsen CP, Alwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Byrden C, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381: 434–8.

    Article  PubMed  CAS  Google Scholar 

  12. Saleem S, Konieczny BT, Lowry RP, Baddoura FK, Lakkis FG. Acute rejection of vascularized heart allografts in the absence of IFN-gamma. Transplantation 1996; 62 (12): 1908–11.

    Article  PubMed  CAS  Google Scholar 

  13. Tullius SG, Tilney NL. Both alloantigen-dependent and–independent factors influence chronic allograft rejection. Transplantation 1995; 59: 313–18.

    PubMed  CAS  Google Scholar 

  14. Goes N, Urmson J, Ramassar V, Halloran PF. Ischemic acute tubular necrosis induces an extensive local cytokine response: evidence for induction of interferon-g, transforming growth factor b-1, granulocyte-macrophage colony stimulating factor, interleukin-2 and interleukin-10. Transplantation 1995; 59: 565–72.

    PubMed  CAS  Google Scholar 

  15. Steele DJR, Laufer TM, Smiley ST, Ando Y, Grusby MT, Glimcher LH, et al. Two levels of help for B cell alloantibody production. J Exp Med 1996; 183: 699–703.

    Article  PubMed  CAS  Google Scholar 

  16. Waldmann H, Cobbold S. How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Annu Rev Immunol 1998; 16: 619–44.

    Article  PubMed  CAS  Google Scholar 

  17. Onodera K, Lehmann M, Akalin E, Volk HD, Sayegh MH, Kupiec-Weglinski JW. Induction of “infectious” tolerance to MHC-incompatible cardiac allografts in CD4 monoclonal antibody-treated sensitized rat recipients. J Immunol 1996; 157 (5): 1944–50.

    PubMed  CAS  Google Scholar 

  18. Sch=nrich G, Kalinke U, Momburg F, Malissen M, SchmittVerhulst A-M, Malissen B, Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 1991; 65: 293–304.

    Article  Google Scholar 

  19. Teh HS, Kishi H, Scott B, Von Boehmer H. Deletion of autospecific T cells in T cell receptor transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J Exp Med 1989; 169: 795–806.

    Article  PubMed  CAS  Google Scholar 

  20. Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo required CTLA-4 engagement. Immunity 1997; 6: 411–17.

    Article  PubMed  CAS  Google Scholar 

  21. Hancock WW, Khoury SJ, Carpenter CB, Sayegh MH. Differential effects of oral versus intrathymic administration of polymorphic MHC class II peptides on mononuclear and endothelial cell activation and cytokine expression

    Google Scholar 

  22. during a delayed-type hypersensitivity response. Am J Pathol 1994; 144: 1149–58.

    Google Scholar 

  23. Kupiec-Weglinski JW, Wasowska B, Papp I, Schmidbauer G, Sayegh MH, Baldwin WMI, et al. CD4mAb therapy modulates alloantibody production and intracardiac graft deposition in association with selective inhibition of Thl lymphokines. J Immunol 1993; 151: 5053–61.

    PubMed  CAS  Google Scholar 

  24. Sayegh MH, Akalin E, Hancock WW, Russell ME, Carpenter CB, Turka LA. CD28–B7 blockade after alloantigenic challenge in vivo inhibits Thl cytokines but spares Th2. J Exp Med 1995; 181: 1869–74.

    Article  PubMed  CAS  Google Scholar 

  25. Isakovik K, Waksman B. Tolerance to bovine gamma globulin in thymectomized, irradiated rats grafted with thymus from tolerant donors. J Exp Med 1965; 122: 1103–9.

    Article  Google Scholar 

  26. Posselt AM, Barker CF, Tomaszewski JE, Markmann JF, Choti MA, Naji A. Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 1990; 249: 1293–5.

    Article  PubMed  CAS  Google Scholar 

  27. Posselt AM, Barker CF, Friedman AL, Naji A. Prevention of autoimmune diabetes in the BB rat by intrathymic islet transplantation at birth. Science 1992; 256: 1321–4.

    Article  PubMed  CAS  Google Scholar 

  28. Remuzzi G, Rossini M, Imberti O, Perico N. Kidney graft survival in rats without immunosuppressants after intrathymic glomerular transplantation. Lancet 1991; 337: 750–2.

    Article  PubMed  CAS  Google Scholar 

  29. Chen W, Sayegh MH, Khoury SJ. Mechanisms of acquired thymic tolerance in Vivo: intrathymic injection of antigen induces apoptosis of thymocytes and peripheral T cell anergy. J Immunol 1998; 160: 1504–8.

    PubMed  CAS  Google Scholar 

  30. Chester CH, Sykes M, Sachs DH. Multiple mixed chimeras: reconstitution of lethally irradiated mice with syngeneic plus allogeneic bone marrow from multiple strains. Res Immunol 1989; 140 (5–6): 503–16.

    Article  PubMed  CAS  Google Scholar 

  31. Wekerle T, Sayegh MH, Hill J, Zhao Y, Chandraker A, Swenson KG, et al. Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J Exp Med 1998; 187 (12): 2037–44.

    Article  PubMed  CAS  Google Scholar 

  32. Starzl T, Demetris A, Murase N, Thompson AW, Trucco M, Ricordi C. Donor cell microchimerism permitted by immunosuppressive drugs; a new view of organ transplantation. Immunol Today 1993; 14: 326–32.

    Article  PubMed  CAS  Google Scholar 

  33. Thomson AW, Lu L, Murase N, Demetris AJ, Rao AS, Starzl TE. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells (Dayt) 1995; 13 (6): 622–39.

    Article  CAS  Google Scholar 

  34. Barber WH, Mankin JA, Laskow DA, Deierhoi MH, Julian BA, Curtis JJ, et al. Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation 1991; 51 (1): 70–5.

    Article  PubMed  CAS  Google Scholar 

  35. Garcia-Morales R, Carreno M, Mathew J, et al. The effects of chimeric cells following donor bone marrow infusions as detected by PCR-flow analyses in kidney transplant recipients. J Clin Invest 1997; 99: 1118–29.

    Article  PubMed  CAS  Google Scholar 

  36. Schroeder TJ, First MR. Monoclonal antibodies in organ transplantation. Am J Kidney Dis 1994; 23: 138.

    PubMed  CAS  Google Scholar 

  37. Sayegh MH, Kut JP, Milford EL. Anti-CD4 monoclonal antibody (BWH-4) effects cellular hyporesponsiveness and prolongs renal allograft survival in the rat. Human Immunol 1989; 26: 131.

    Article  CAS  Google Scholar 

  38. Dengping Y, Fathman CG. CD4-positive suppressor cells block allotransplant rejection. J Immunol 1995; 154: 6339445.

    Google Scholar 

  39. Qin S, Cobbold S, Pope H, Elliott J, Kioussis D, Davies J, “Infectious” transplantation tolerance. Science 1993; 259: 974–6.

    Article  PubMed  CAS  Google Scholar 

  40. Sayegh MH, Carpenter MH. Role of indirect allorecognition in allograft rejection. Int Rev Immunol 1996; 13: 221–9.

    Article  PubMed  CAS  Google Scholar 

  41. Watschinger B, Gallon L, Carpenter CB, Sayegh MH. Mechanisms of allorecognition: recognition by in vivo primed T-cells of specific major histocompatibility complex polymorphisms presented as peptides by responder antigen-presenting cells. Transplantation 1994; 57: 572–7.

    PubMed  CAS  Google Scholar 

  42. Sayegh MH, Khoury SK, Hancock WW, Weiner HL, Carpenter CB. Induction of immunity and oral tolerance with polymorphic class II MHC allopeptides in the rat. Proc Natl Acad Sci USA 1992; 89: 7762–6.

    Article  PubMed  CAS  Google Scholar 

  43. Vella J, Knoflach A, Sayegh M. T cell mediated immune responses in chronic allograft rejection: role of indirect allorecognition and costimulatory pathways. Graft 1998; I (Suppl 2): 11–17.

    Google Scholar 

  44. Vella JP, Vos L, Carpenter CB, Sayegh MH. Role of indirect allorecognition in experimental late acute rejection. Transplantation 1997; 64 (12): 1823–8.

    Article  PubMed  CAS  Google Scholar 

  45. Sayegh MH, Krensky AM. Novel immunotherapeutic strategies using MHC derived peptides. Kidney Int 1996; 53: S 13–20.

    Google Scholar 

  46. Magee CC, Sayegh MH. Peptide-mediated immunosuppression. Curr Opin Immunol 1997; 9: 669–75.

    Article  PubMed  CAS  Google Scholar 

  47. Sayegh MH, Perico N, Imberti O, Hancock WW, Carpenter CB, Remuzzi G. Thymic recognition of class II MHC allopeptides induces donor specific unresponsiveness to renal allo-grafts. Transplantation 1993; 56: 461–5.

    Article  PubMed  CAS  Google Scholar 

  48. No_ner E, Goldberg J, Naftzger C, Lyu S-C, Clayberger C, Krensky Am. HLA-derived peptides which inhibit T cell function bind to members of the Heat Shock Protein 70 family. J Exp Med 1996; 183: 339–48.

    Google Scholar 

  49. Murphy B, Sayegh MH. Immunomodulatory function of major histocompatibility complex-derived peptides. Curr Opin Nephrol Hypertens 1996; 5 (3): 262–8.

    Article  PubMed  CAS  Google Scholar 

  50. Russell ME, Hancock WW, Akalin E, Wallace AF, GlysingJensen T, Willett T, et al. Chronic cardiac rejection in the Lewis to F344 rat model: Blockade of CD28–B7 costimulation by CTLA4Ig modulates T cell and macrophage activation and attenuates arteriosclerosis. J Clin Invest 1996; 97: 833–8.

    Article  PubMed  CAS  Google Scholar 

  51. Schaub M, Stadlbauer T, Chandraker A, Vella JP, Turka LA, Sayegh MH. Comparative strategies to induce longterm graft acceptance in fully allogeneic renal versus cardiac allograft models by CD28–B7 T cell costimulatory blockade: Role of thymus and spleen. J Am Soc Nephrol 1998; 9 (5): 891.

    PubMed  CAS  Google Scholar 

  52. Azuma H, Chandraker A, Nadeau K, Hancock WW, Carpenter CB, Tilney NL, et al. Blockade of T cell costimulation prevents development of experimental chronic allo-graft rejection. Proc Natl Acad Sci USA 1996; 93: 12439–44.

    Article  PubMed  CAS  Google Scholar 

  53. Chandraker A, Azuma H, Nadeau K, Carpenter CB, Tilney NL, Hancock WW, et al. Late blockade of T cell costimulation interrupts progression of experimental chronic allo-graft rejection. J Clin Invest 1998; 101: 2309–18.

    Article  PubMed  CAS  Google Scholar 

  54. Chandraker A, Russell ME, Glysing-Jensen T, Willett TA, Sayegh MH. T cell costimulatory blockade in experimental chronic cardiac allograft rejection: effects of cyclosporine and donor antigen. Transplantation 1997; 63: 1053–8.

    Article  PubMed  CAS  Google Scholar 

  55. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 1993; 361 (6412): 541–3.

    Article  PubMed  CAS  Google Scholar 

  56. Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40–CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA 1997; 94 (5): 1931–6.

    Article  PubMed  CAS  Google Scholar 

  57. Reul R, Fang J, Denton M, et al. CD40 and CD40 ligand are co-expressed on microvessels in human cardiac allograft rejection. Transplantation 1997; 64 (12): 1–10.

    Article  Google Scholar 

  58. Hancock WW, Sayegh MH, Peach R, Linsley PS, Turka LA. Costimulatory function of CD40L, CD80 and CD86 in vascularized murine cardiac allograft rejection. Proc Natl Acad Sci USA 1996; 93: 13967–72.

    Article  PubMed  CAS  Google Scholar 

  59. Harlan DM, Armstrong NN, Davis TA, Dong V, Gray GS, CTLA4-Ig and anti-CD40 ligand prevent renal allo-graft rejection in primates. Proc Natl Acad Sci USA 1997; 94: 8789–94.

    Article  PubMed  Google Scholar 

  60. Weiner HL, Friedman A, Miller A, Khoury SJ, Al-Sabbagh A, Santos L, et al. Oral tolerance: Immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 1994; 12: 809–38.

    Article  PubMed  CAS  Google Scholar 

  61. Wells H. Studies on the chemistry of anaphylaxi.Ill. Experiments with isolated proteins especially those of hen’s egg. J Infect Dis 1911; 9: 147.

    Article  CAS  Google Scholar 

  62. Thomas HC, Parrott DMV. The induction of tolerance to a soluble protein antigen by oral administration. Immunology 1974; 27: 631.

    PubMed  CAS  Google Scholar 

  63. Chen Y, Kuchroo VK, Inobe J-I, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–40.

    CAS  Google Scholar 

  64. Friedman A, Weiner HI,. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 1994; 91 (14): 6688–92.

    Article  PubMed  CAS  Google Scholar 

  65. Miller A, Lider O, Weiner HL. Antigen-driven bystander suppression following oral administration of antigens. J Exp Med 1991; 174: 791.

    Article  PubMed  CAS  Google Scholar 

  66. Sayegh MH, Perico N, Gallon L, Imberti O, Hancock WW, Remuzzi G, et al. Mechanisms of acquired thymic unresponsiveness to renal allografts: Thymic recognition of immunodominant allo-MHC peptides induces peripheral T cell anergy. Transplantation 1994; 58: 125–32.

    PubMed  CAS  Google Scholar 

  67. Opelz G, Terasaki PI. Poor kidney-transplant survival in recipients with frozen-blood transfusions or no transfusions. Lancet I974;ii(7882):696–8.

    Google Scholar 

  68. Opelz G, Vanrenterghem Y, Kirste G, Gray DWR, Horsburgh T, Lachance JG, et al. Prospective evaluation of pretransplant blood transfusions in cadaver kidney recipients. Transplantation 1997; 63 (7): 964–7.

    Article  PubMed  CAS  Google Scholar 

  69. Vella JP, O’Neill I), Atkins N, Donohoe JF, Walshe JJ. Sensitization to human leukocyte antigen before and after the introduction of erythropoietin. Nephrol Dial Transplant 1998; 13: 2072–32.

    Article  Google Scholar 

  70. Salvatierra OJ, Melzer J, Potter D, Garovoy M, Vincenti F, Amend WJ, et al. A seven-year experience with donor-specific blood transfusions. Results and considerations for maximum efficacy. Transplantation 1985; 40 (6): 654–9.

    Article  PubMed  Google Scholar 

  71. Lagaaij EL, Hennemann IP, Ruigrok M, de HM, Persijn GG, Termijtelen A, et al. Effect of one-HLA-DR-antigen-matched and completely H LA-DR-mismatched blood transfusions on survival of heart and kidney allografts. N Engl J Med 1989; 321 (11): 701–5.

    Article  PubMed  CAS  Google Scholar 

  72. Liu Z, Colovai AI, Tuguloa S, Reed EF, Fisher PE, Mancicni D, et al. Indirect recognition of donor HLA peptides in organ allograft rejection. J Clin Invest 1996; 98: 1150–7.

    Article  PubMed  CAS  Google Scholar 

  73. Strehlau J, Pavlakis M, Lipman M, Shapiro M, Vasconcellos L, Harmon W, et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci USA 1997; 94: 695–700.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Vella, J.P., Stadlbauer, T.H.W., Schaub, M., Sayegh, M.H. (2001). Immune Tolerance. In: Hakim, N.S., Danovitch, G.M. (eds) Transplantation Surgery. Springer Specialist Surgery Series. Springer, London. https://doi.org/10.1007/978-1-4471-3689-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3689-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-859-1

  • Online ISBN: 978-1-4471-3689-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics