Space propulsion today

  • Gregory L. Matloff
Part of the Space Exploration book series (PRAXIS)

Abstract

Since the dawn of the Space Age, hundreds of humans have entered this strange new realm in modern-day equivalents of the Yankee Clipper. Twenty-four (three of them twice) have orbited our Moon or landed upon it and viewed the Earth as a precious blue-green orb suspended in the inky blackness of the void. Our robot emissaries have tested the soils of the Moon, Mars and Venus, and have flown by all Solar System planets except frozen Pluto. The robotic exploration of local asteroids and comets and the satellites of Solar System planets continues, and four small craft — the intrepid Pioneer 10/11 and Voyager 1/2 — have become humanity’s first Galactic emissaries.

Keywords

Carbide Mercury Chromium Europe Lithium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. ‘Deep Space 1 Spacecraft’, noted in Spaceflight, 40, 352 (1998).Google Scholar
  2. Adams, C. S., Space Flight, McGraw-Hill, New York (1958).Google Scholar
  3. Belbruno, E., ‘Through the Fuzzy Boundary: A New Route to the Moon’, The Planetary Report, 12, No. 3, 8–10 (1992).Google Scholar
  4. Belbruno, E. and Miller, J. K., ‘Sun-Perturbed Earth-to-Moon Transfers with Ballistic Capture’, Journal of Guidance, Control and Dynamics, 16, 770–776 (1993).ADSCrossRefGoogle Scholar
  5. Bernasconi, M. C. and Reibaldi, G. C., ‘Inflatable Space-Rigidized Structures: Overview of Applications and Technology Impact’, Acta Astronautica, 14, 455–465 (1986).CrossRefGoogle Scholar
  6. Brewer, G. R., Ion Propulsion, Gordon and Breach, Philadelphia, PA (1970).Google Scholar
  7. Casani, E. K., Stocky, J. F. and Rayman, M. D., ‘Solar Electric Propulsion’, Missions to the Outer Solar System and Beyond, 1st IAA Symposium on Realistic Near-Term Scientific Space Missions, ed. G. Genta, Levrotto & Bella, Turin, Italy (1996), pp. 143–158.Google Scholar
  8. Cassenti, B. N., Matloff, G. L. and Strobl, J., ‘The Structural Response and Stability of Interstellar Solar Sails,’ Journal of the British Interplanetary Society, 49, 345–350 (1996).Google Scholar
  9. Cassenti, B. N., ‘Optimization of Interstellar Solar Sail Velocities’, Journal of the British Interplanetary Society, 50, 475–478 (1997).Google Scholar
  10. Ehricke, K. E., ‘Saturn-Jupiter Rebound: A Method of High Speed Spacecraft Ejection from the Solar system’, Journal of the British Interplanetary Society, 25, 561–572 (1972).ADSGoogle Scholar
  11. Ewing, A., ‘Solar Sail Spacecraft Design using Dimensional Analysis’, IAA-92–0239.Google Scholar
  12. Flandro, G. A., ‘Fast Reconaissance Missions to the Outer Solar System Utilizing Energy Derived from the Gravitational Field of Jupiter’, Astronautica Acta, 12, 329–337 (1966).Google Scholar
  13. Friedman, L., Starsailing, Wiley, New York (1988).Google Scholar
  14. Forward, R. L., ‘Grey Solar Sails’, The Journal of the Astronautical Sciences, 38, 161–185 (1990).Google Scholar
  15. Forward, R. L., ‘Solar Photon Thruster’, Journal of Spacecraft, 27, 411–416 (1990).ADSCrossRefGoogle Scholar
  16. Forward, R. L. and Davis, J., Mirror Matter, Wiley, New York (1988).Google Scholar
  17. Genta, G. and Brusca, E., ‘The Parachute Sail with Hydrostatic Beam: A New Concept for Solar Sailing’, and ‘The Aurora Project: A New Sail Layout’, in Missions to the Outer Solar System and Beyond, 2nd IAA Symposium on Realistic Near-Term Scientific Space Missions, ed. G. Genta, Levrotto & Bella, Turin, Italy (1988), pp. 61–68 and 69–74. Also published in Acta Astronautica, 44, 133–140 and 141–146 (1999).Google Scholar
  18. Joels, K. M., Kennedy, G. P. and Larkin, D., The Space Shuttle Operator’s Manual, Ballantine, New York (1982).Google Scholar
  19. Koblik, V. V., Polyakhova, E. N. Sokolov, L. L. and Shmyrov, A. S., ‘Controlled Solar Sailing Transfer Flights into Near-Sun Orbits under Restrictions on Sail Temperature’, Cosmic Research, 34, 572–578 (1996).ADSGoogle Scholar
  20. Landis, G. A., ‘Photovoltaic Receivers for Laser Beamed Power in Space’, NASA Contract Report 189075, Sverdrup Technology Inc., Lewis Research Center Group, Brook Park, OH, USA.Google Scholar
  21. Landis, G. A., ‘Small Laser-Pushed Lightsail Interstellar Probe’, Journal of the British Interplanetary Society, 50, 149–154 (1997).Google Scholar
  22. Maccone, C., ‘Solar Foci Missions’, IAA-L-0604, in Proceedings of the Second International Conference on Low-Cost Planetary Missions, Laurel, MD, April 1996.Google Scholar
  23. Mallove, E. F. and Matloff, G. L., The Starflight Handbook, Wiley, New York (1989).Google Scholar
  24. Matloff, G. L. and Mallove, E. F., ‘Solar Sail Starships — the Clipper Ships of the Galaxy’, Journal of the British Interplanetary Society, 34, 371–380 (1981).ADSGoogle Scholar
  25. Matloff, G. L. and Mallove, E. F., ‘The Interstellar Solar Sail: Optimization and Further Analysis’, Journal of the British Interplanetary Society, 36, 201–209 (1983).ADSGoogle Scholar
  26. Matloff, G. L., ‘Beyond the Thousand Year Ark: Further study of Non-Nuclear Interstellar Flight’, Journal of the British Interplanetary Society, 36, 483–489 (1983).ADSGoogle Scholar
  27. Matloff, G. L., ‘Interstellar Solar Sailing. Consideration of Real and Projected Sail Material’, Journal of the British Interplanetary Society, 37, 135–141 (1984).ADSGoogle Scholar
  28. Matloff, G. L. and Ubell, C. B., Worldships: Prospects for Non-Nuclear Propulsion and Power Sources’, Journal of the British Interplanetary Society, 38, 253–261 (1985).ADSGoogle Scholar
  29. Matloff, G. L. and Parks, K., ‘Interstellar Gravity Assist Propulsion: A Correction and New Application’, Journal of the British Interplanetary Society, 41, 519–526 (1986).Google Scholar
  30. Matloff, G. L., ‘Early Interstellar Precursor Solar Sail Probes’, Journal of the British Interplanetary Society, 44, 367–370 (1991).Google Scholar
  31. Matloff, G. L., Walker, E. H. and Parks, K., ‘Interstellar Solar Sailing: Application of Electrodynamic Turning’, AIAA-91–2538.Google Scholar
  32. Matloff, G. L., ‘The Impact of Nanotechnology upon Interstellar Solar Sailing and SETI’, Journal of the British Interplanetary Society, 49, 307–312 (1996).Google Scholar
  33. Matloff, G. L., ‘Interstellar Solar Sails: Projected Performance of Partially Transmissive Sail Films’, IAA-97-IAA.4. 1. 04.Google Scholar
  34. Mauldin, J. H., Prospects for Interstellar Travel, Univelt, San Diego, CA (1992).Google Scholar
  35. McInnes, C. R. and Brown, J. C., ‘Solar Sail Dynamics with an Extended Source of Radiation Pressure’, Acta Astronautica, 22, 155–160 (1990).CrossRefGoogle Scholar
  36. McInnes, C. R., Solar Sailing, Praxis, Chichester, UK (1999), pp. 43–46.Google Scholar
  37. Nock, K., ‘TAU — A Mission to a Thousand Astronomical Units’, AIAA-87–1049.Google Scholar
  38. Polyakhova, E. N., Spaceflight Using a Solar Sail: The Problems and Prospects (in Russian), Vol. 9., Mekhanika Kismicheskogo Poleta Series, Isdatelstvo Nauka (1986). (English translation JPRS-USP-88–003-L available to US Government employees and contractors.)Google Scholar
  39. Potter, S. D., ‘Applications of Thin-Film Technology in Space Power Systems’, in Proceedings of High Frontier Conference XII, Space Studies Institute, Princeton, NJ (May 4–7, 1995 ).Google Scholar
  40. Ravenni, L., ‘Flyby: Una Spinta Per Esplorare L’Universo’, thesis (in Italian), Università degli Studi di Siena, Siena, Italy (1997).Google Scholar
  41. Santoli, S. and Scaglione, S., ‘Project Aurora: A Preliminary Study of a Light, All-Metal Solar Sail’, in Missions to the Outer Solar System and Beyond, 1st IAA Symposium on Realistic Near-Term Scientific Space Missions, ed. G. Genta, Levrotto & Bella, Turin, Italy (1996), pp. 37–48.Google Scholar
  42. Shvartsburg, A., ‘Solar Sail dynamics using Extended Light Source’, in Proceedings of 1993 AINA Conference — Advances in Nonlinear Astrodynamics, ed. E. Belbruno, Geometry Center, University of Minnesota, Minneapolis, MN (November 8–9, 1993 ).Google Scholar
  43. Stone, E. C. and Lane, A. L., ‘Voyager 1 Encounter with the Jovian System’, Science, 204, 945–948 (1979).ADSCrossRefGoogle Scholar
  44. Strobl, J., ‘The Hollow Body Solar Sail’, Journal of the British Interplanetary Society, 42, 515–520 (1989).Google Scholar
  45. Tsu, T. S., ‘Interplanetary Travel by Solar Sail’, ARS Journal, 29, 422–427 (1959).CrossRefGoogle Scholar
  46. Vulpetti, G., ‘3D High-Speed Escape Heliocentric Trajectories for All-Metal-Sail, Low-Mass Sailcraft’, Acta Astronautica, 39, 161–170 (1996).ADSCrossRefGoogle Scholar
  47. Vulpetti, G., ‘Sailcraft at High Speed by Orbital Angular Momentum Reversal’, Acta Astronautica, 40, 733–758 (1997).ADSCrossRefGoogle Scholar
  48. Vulpetti, G., ‘Sailcraft-Based Mission to the Solar Gravitational Lens’, presented at STAIF 2000 Conference, University of New Mexico, Albuquerque, NM, January 30–February 3, 2000.Google Scholar
  49. Wright, J. L., Space Sailing, Gordon and Breach, Philadelphia, PA (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Gregory L. Matloff
    • 1
  1. 1.General Studies ProgramNew York UniversityNew YorkUSA

Personalised recommendations