Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 311 Accesses

Abstract

Up to this point, discussions on autotuners are mostly limited to singleinput-single-output (SISO) systems. Koivo and co-workers (Penttiner and Koivo, 1980; Koivo and Pohjolainer, 1985) use step responses to find the state space model for a n × n multivariable system. PI controllers are designed according to the linear model. Conceptually, this is similar to a multivariable version of the process reaction curve method (Seborg et al., 1989, p.302). Since step responses are employed in the identification phase, the method may encounter difficulties with highly nonlinear processes. Cao and McAvoy (1990) evaluate and analyze the performance of the pattern recognition controller (EXACT, Bristol, 1977) in a multivariable system. Hsu et al. (1992) attempt to extend the Åström-Hägglund autotuner to multivariable systems when I-only (integral only) controllers are used. Furthermore, the method of Hsu et al. (1992) requires that the steady-state gain matrix should be known a priori. Obviously, this requirement limits the applicability of the autotuner in an operating environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åström, K. J.; Hägglund, T. “Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins,” Automatic 1984, 20, 645.

    Article  MATH  Google Scholar 

  2. Åström, K. J.; Hang, C. C.; Persson, P.; Ho, W. K. “Towards Intelligent PID Control,” Automatica 1992, 28, 1.

    Google Scholar 

  3. Bhalodia, M.; Weber, T. W. “ Feedback Control of a Two-Input, Two-Output Interacting Process,” Ind. Eng. Chem. Process Des. Dev. 1979, 18, 599.

    Google Scholar 

  4. Bernstein, D. S. “Sequential Design of Decentralized Dynamic Compensators Using the Optimal Projection Equations,” Int. J. Control 1987, 46, 1569.

    Google Scholar 

  5. Bristol, E. H. “Pattern Recognition: An Alternative to Parameter Adaptive PID Controller,” Automatica 1977, 13, 197.

    Google Scholar 

  6. Bristol, E. H. “New Measure of Interaction for Multivariable Process Control,” IEEE Trans. Automat. Control1966, AC-11,133.

    Google Scholar 

  7. Cao, R.; McAvoy, T. J. “Evaluation of Pattern Recognition Adaptive PID Controller,” Automatica 1990, 26, 797.

    Google Scholar 

  8. Chang, D. M.; Yu, C. C. “The Distillate-Bottoms Control of Distillation Columns: Modeling, Tuning and Robustness Issues,” J. Chin. Inst. Chem. Eng. 1992, 23, 344.

    Google Scholar 

  9. Chiang, T. P.; Luyben, W. L. “Comparison of the Dynamic Performances of Three Heat-Integrated Distillation Configurations,” Ind. Eng. Chem. Res. 1988, 27, 99.

    Google Scholar 

  10. Chiu, M. S.; Arkun, Y. “A Methodology for Sequential Design of Robust Decentralized Control Systems,” Automatica 1992, 28, 997.

    Google Scholar 

  11. Fuentes, C.; Luyben, W. L. “Control of High-Purity Distillation Columns,” Ind. Eng. Chem. Process Des. Dev. 1983, 22, 361.

    Google Scholar 

  12. Häggblom, K. E.; Waller, K. V. “Transformations and Consistency Relations of Distillation Control Structures,” AIChE J. 1988, 34, 1634.

    Google Scholar 

  13. Häggblom, K. E.; Waller, K. V. “Control Structure, Consistency, and Transformations,” Practical Distillation Control, Luyben, W. L., Ed.; Van Nostrand Reinhold: New York 1992.

    Google Scholar 

  14. Hsu, L.; Chan, M.; Bhaya, A. “Automated Synthesis of Decentralized Tuning Regulators for Systems with Measurable DC Gain,” Automatica 1992, 28, 185.

    Google Scholar 

  15. Grosdidier, P.; Morari, M.; Holt, R. B. “Closed-Loop Properties from Steady-State Gain Information,” Ind. Eng. Chem. Process Des. Dev. 1985, 24, 221.

    Google Scholar 

  16. Koivo, H. N.; Pohjolainen, S. “Tuning of Multivariable PI Controller for Unknown Systems with Input Delay,” Automatica 1985, 21, 81.

    Google Scholar 

  17. Leithead, W. E.; O’Reilly, J. “Performance Issues in the Individual Channel Design of 2-input 2-output Systems. Part 1. Structural Issues,” Int. J. Control 1991, 54, 47.

    Google Scholar 

  18. Luyben, W. L. “Simple Method for Tuning SISO Controllers in Multivariable Systems,” Ind. Eng. Chem. Process Des. Dev. 1986, 25, 654.

    Google Scholar 

  19. Luyben, W. L. “Sensitivity of Distillation Relative Gain Arrays to Steady-State Gains,” Ind. Eng. Chem. Res. 1987a, 26, 2076.

    Google Scholar 

  20. Luyben, W. L. “Derivation of Transfer Functions for Highly Nonlinear Distillation Columns,” Ind. Eng. Chem. Res. 1987b, 26, 2490.

    Google Scholar 

  21. Luyben, W. L. Process Modeling, Simulation and Control for Chemical Engineers; 2nd ed., McGraw-Hill: New York, 1990.

    Google Scholar 

  22. Marino-Galarraga, M.; McAvoy, T. J.; Marlin, T. E. “Short-Cut Operability Analysis. 2. Estimation of f t Detuning Parameter for Classical Control Systems,” Ind. Eng. Chem. Res. 1987, 26, 511.

    Google Scholar 

  23. Mayne, D. Q. “The Design of Linear Multivariable Systems,” Automatica 1973, 9, 201.

    Google Scholar 

  24. Mayne, D. Q. “Sequential Design of Linear Multivariable Systems,” Proc. IEE Part D, 1979, 126, 568.

    Google Scholar 

  25. Ogunnaike, B. A.; Ray, W. H. “Multivariable Controller Design for Linear Systems Having Multiple Time Delays,” AIChE J. 1979, 25, 1043.

    Google Scholar 

  26. O’Reilly, J.; Leithead, W. E. “Multivariable Control by Individual Channel Design,” Int. J. Control 1991 54, 1.

    Google Scholar 

  27. Papastathopoulou, H. S.; Luyben, W. L. “Tuning Controllers on Distillation Columns with the Distillate-Bottoms Structure,” Ind. Eng. Chem. Res. 1990, 29, 1859.

    Google Scholar 

  28. Penttinen, J.; Koivo, H. N. “Multivariable Tuning Regulators for Unknown Systems,” Automatica 1980, 16, 393.

    Google Scholar 

  29. Rice, J. R. Numerical Methods, Software, and Analysis; McGraw-Hill: New York, 1983.

    Google Scholar 

  30. Schei, T. S. “A Method for Closed Loop Automatic Tuning of PID Controllers,” Automatica 1992, 28, 587.

    Google Scholar 

  31. Seborg, D. E.; Edgar, T. F.; Mellichamp, D. A. Process Dynamics and Control; Wiley: New York, 1989.

    Google Scholar 

  32. Shen, S. H.; Yu, C. C. “Indirect Feedforward Control: Multivariable Systems,” Chem. Eng. Sci. 1992, 47, 3085.

    Google Scholar 

  33. Shen, S. H.; Yu, C. C. “Use of Relay Feedback Test for Automatic Tuning of Multivariable Systems,” AIChE J. 1994, 40, 627.

    Google Scholar 

  34. Tan, L. Y.; Weber, T. W. “Controller Tuning of a Third-Order Process under Proportional-Integral Control,” Ind. Eng. Chem. Process Des. Dey. 1985, 24, 1155.

    Google Scholar 

  35. Skogestad, S.; Landström, P. “µ-Optimal LV-Control of Distillation Columns,” Comput. Chem. Eng. 1990, 14, 401.

    Google Scholar 

  36. Wood, R. K.; Berry, M. W. “Terminal Composition Control of a Binary Distillation Column,” Chem. Eng. Sci. 1973, 28, 1707.

    Google Scholar 

  37. Yu, C. C.; Fan, M. K. H. “Decentralized Integral Controllability and D-stability,” Chem. Eng. Sci. 1990, 45, 3299.

    Article  Google Scholar 

  38. Ziegler, J. G.; Nichols, N. B. “Optimum Settings for Automatic Controllers,” Trans. ASME 1942, 12, 759.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, CC. (1999). Multivariable Systems. In: Autotuning of PID Controllers. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-3636-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3636-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3638-5

  • Online ISBN: 978-1-4471-3636-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics