Skip to main content

Biosynthesis and Structure of Lignocellulose

  • Chapter

Part of the Springer Series in Applied Biology book series (SSAPPL.BIOLOGY)

Abstract

Lignocellulose is generally considered to be the most abundant organic chemical on earth and has attracted much attention over recent years, both as a direct energy resource and as a feedstock for production of fuel, chemicals and food. Lynch (1987) considers that approximately 50% of the world’s biomass is in the form of lignocellulose (estimated at 3 × 1011 tonnes) and annual production is judged to be in the range 2–5 × 109 tonnes (Kirk and Fenn 1982). The majority of lignocellulose is found as wood and straw.

Keywords

  • Secondary Cell Wall
  • Primary Cell Wall
  • Cellulose Synthesis
  • Cellulose Biosynthesis
  • Coniferyl Alcohol

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-3470-1_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-3470-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler E (1977) Lignin Chemistry. Past, present and future Wood Science and Technol. 11: 169–218

    CAS  Google Scholar 

  • Aspinall GO (1980) Chemistry of cell wall polysaccharides in The Biochemistry of Plants, a comprehensive treatise Vol 3 Preiss J (ed) Academic Press pp 473-500

    Google Scholar 

  • Attala RH, van der Hart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223: 283–285

    CrossRef  Google Scholar 

  • Baydoun EA-H, Brett CT (1984) The effect of pH on the binding of calcium to pea epicotyl cell walls J Expt Bot. 35: 1820–1831

    CrossRef  CAS  Google Scholar 

  • Blackwell J, Marchessault RH (1971) In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives, part 4. Wiley Interscience, New York pp 1–2

    Google Scholar 

  • Blackwell J, Kolpak FJ, Gardner KH (1977) In: Arthur JC (ed) Cellulose chemistry and technology, ACS Symposium Series No 48. American Chemical Society, Washington pp 42–43

    CrossRef  Google Scholar 

  • Bowles DJ, Northcote DH (1974) The amounts and rates of export of polysaccharides found in the membrane systems of maize root cells. Biochem J 142: 139–144

    PubMed  CAS  Google Scholar 

  • Buliga GS, Brant DA, Fincher GB (1986) The sequence statistics and solution confirmation of a barley (1 3, 1 4)-β-D-glucan. Carbohydrate Res 157: 139–156

    CrossRef  CAS  Google Scholar 

  • Camirand A, Brummell D, MacLachlan G (1987) Fucosylation of Xyloglucan. Plant Physiol. 84: 753–756

    PubMed  CrossRef  CAS  Google Scholar 

  • Crawford RL (1981) Lignin Biodegradation and Transformation. Wiley Interscience

    Google Scholar 

  • Delmer DP (1987) Cellulose Biosynthesis. Ann. Revs. Plant Physiology 38: 259–290

    CrossRef  CAS  Google Scholar 

  • Doyle CJ, Mason VC, Baker RD (1988) Straw disposal and utilisation: an economic evaluation of the end-uses for wheat straw in the UK. Biological Wastes 23:39–56

    CrossRef  CAS  Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Biodegradation of cellulose. In: Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, Heidelberg pp 89–177

    CrossRef  Google Scholar 

  • Fan LT, Young-Hyun Lee, Gharpuray MM (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv Biochem Eng 23:155–188

    Google Scholar 

  • Feingold DS, Avigard G (1980) Sugar nucleotide transformations in Plants. In Biochemistry of Plants; A Comprehensive Treatise Vol 3 Preiss J (ed) Academic Press pp 101-170

    Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin 613 pp

    CrossRef  Google Scholar 

  • Fincher GB, Stone BA (1981) Metabolism of non-cellulosic polysaccharides in Plant Carbohydrates II Tanner W, Loewus FA (eds) Springer, Berlin pp 68–132

    Google Scholar 

  • Freudenberg K (1965) Lignin: Its constitution and formation from p-hydroxy cinnamyl alcohols Science 148: 595–600

    PubMed  CrossRef  CAS  Google Scholar 

  • Freudenberg K (1968) The constitution and biosynthesis of Lignin. In: The constitution and biosynthesis of Lignin Freudenberg K, Neish AC (eds) Springer, Berlin pp 47–122

    Google Scholar 

  • Fry SC (1985) Primary cell wall metabolism Oxford Surv. Plant Mol. Cell. Biol. 2: 1–42 Mifflin BJ (ed)OUP

    CAS  Google Scholar 

  • Fry SC (1987) Intracellular feruloylation of pectin polysaccharides Planta 171: 205–211

    CrossRef  CAS  Google Scholar 

  • Fry SC, Northcote DH (1983) Sugar-nucleotide precursors of the aribinofuranosyl, arabinopyranosyl and xylanopyranosyl residues of spinach polysaccharides. Plant Physiol. 73: 1055–1061

    PubMed  CrossRef  CAS  Google Scholar 

  • Gross GG, Jansen C, Estner EF (1977) Involvement of malate, monophenols and superoxide radicals in hydrogen peroxide formation by isolated cell walls from horse radish (Aromoraeia lapathifolium Gilib) Planta 136: 271–276

    CrossRef  CAS  Google Scholar 

  • Gross GG (1985) Biosynthesis and Metabolism of phenolic acids and monolignols in Biosynthesis and degradation of wood components Higuchi T (ed) Academic Press

    Google Scholar 

  • Harris PJ, Hartley RD (1980) Phenolic constituents of the cell walls of monocotyledons Biochem. Syst. Ecol. 8: 153–160

    CrossRef  CAS  Google Scholar 

  • Hayashi T, Matsuda K (1981) Biosynthesis of xyloglucan in suspension-cultured soyabean cells. Plant Cell Physiol 22: 1571–1584

    CAS  Google Scholar 

  • Henry RJ, Stone BA (1982) Solubilisation of β-glucan synthases from the membranes of cultured ryegrass endosperm cells. Biochem J 203: 629–636

    PubMed  CAS  Google Scholar 

  • Higuchi T (1985) Biosynthesis of lignin. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components Academic Press, San Diego pp 141–160

    Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: Biosynthesis and Degradation. Wood Sci Technol 24: 23–63

    CrossRef  CAS  Google Scholar 

  • Hwang RH, Kennedy JF, Melo EHM, Paterson M, Jumel K (1990) Lignin structure: approach by conformational analysis. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose sources and exploitation: industrial utilisation, biotechnology and physico-chemical properties, Ellis Horwood, England pp 497–504

    Google Scholar 

  • Jeffries TW (1987) Physical, chemical and biochemical considerations in the biological degradation of wood. In: Kennedy JF, Phillips GO, Williams PA (eds) Wood and cellulosics: industrial utilisation, biotechnology, structure and properties. Ellis Horwood Limited, Chichester, England pp 213–230

    Google Scholar 

  • Jansnekar H, Fiechter A (1983) Lignin: Biosynthesis, Application and Biodegradation. Adv Biochem Eng Biotech 27 119–178

    Google Scholar 

  • Kennedy JF (1988) Biotransformation of polysaccharides. A report prepared for the Biotransformation Club of the Government Chemist, UK pp 14–34

    Google Scholar 

  • Kerr AJ, Goring DAI (1975) The ultrastuctural arrangement of the wood cell wall. Cellul Chem Technol 9: 563–573

    Google Scholar 

  • Kirk TK (1983) Degradation and conversion of lignocellulose in The Filamentous Fungi Vol. IV Fungal Technology Smith NE, Berry DR, Kristiansen B (eds) pp 266-295

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: The Microbial Degradation of Lignin Ann Revs Microbiol 41: 464–505

    Google Scholar 

  • Kirk TK, Fenn P (1982) Formation and action of the ligninolytic system in basidiomycetes. In: Swift MJ, Frankland J, Hedger JN (eds) Decomposer basidiomycetes, Br Mycol Soc Symp 4 Cambridge University Press, England pp 67–90

    Google Scholar 

  • Krassig H (1985) Structure of cellulose and its relation to properties of cellulose fibres. In: Kennedy JF, Williams GO, Wedlock DJ, Williams PA (eds) Cellulose and its derivatives. Ellis Horwood Limited, Chichester, England pp 3–26

    Google Scholar 

  • Krauss H, Swanson AL, Hassid WZ (1967) Biosynthesis of the methyl ester groups of pectin by transmethylation from S-adenosyl-L-methionine. Biochem Biophys Res Comm 26: 234–240

    CrossRef  Google Scholar 

  • Loewus FA, Loewus MW (1980) myo-Inositol: Biosynthesis and metabolism in The Biochemistry of Plants, a comprehensive treatise Vol 3 Preiss J (ed) Academic Press pp 43-76

    Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Ann Rev Plant Physiol Plant Mol Biol 41: 455–496

    CrossRef  CAS  Google Scholar 

  • Lynch JM (1987) Utilisation of Lignocellulosic Wastes J Appl Bact Symp Suppl 71S-83S

    Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and Function of the Primary Cell Wall of Plants Ann Revs Biochem 53: 625–663

    CrossRef  CAS  Google Scholar 

  • Meier H, Buchs L, Buchala AJ, Homewood T (1981) (1 3)-β-glucan is a probable intermediate in the biosynthesis of cellulose of cotton fibres Nature 289: 821–822

    CrossRef  CAS  Google Scholar 

  • Nakamura Y, Higuchi T (1976) Ester linkages of p-coumaric acid in Bamboo Holzforsch 30: 187–191

    CrossRef  CAS  Google Scholar 

  • Northcote DH (1972) Chemistry of the plant cell wall. Ann Rev Plant Physiol 23:113–132

    CrossRef  CAS  Google Scholar 

  • Northcote DH, Pickett-Heaps JD (1966) A function of the Golgi apparatus in polysaccharide synthesis and transport in the root cap cells of wheat Biochem J 98: 159–167

    PubMed  CAS  Google Scholar 

  • Obst JR (1982) Frequency and alkali resistance of lignin-carbohydrate bonds in wood. Tappi 65 109–112

    CAS  Google Scholar 

  • Reid JSG (1985) Structure and function in legume-seed polysaccharides. In: Plant Cell Walls Brett CT, Hulman JR (eds) CUP pp 259-268

    Google Scholar 

  • Robinson DG, Eisinger WR, Ray PM (1976) Dynamics of the Golgi system in wall matrix polysaccharide synthesis and secretion by pea cells. Ber deutch Bot Ges 89: 147–161

    CAS  Google Scholar 

  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohang P, Mayer R, Braun S, de Vroom E, van der Marcl G, van Boem JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinwn by cyclic diguanylic acid. Nature 325: 279–281

    PubMed  CrossRef  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiological Reviews 55: 35–58

    PubMed  CAS  Google Scholar 

  • Sakakibara A (1983) Chemical structure of lignin related mainly to degradation products. In: Recent Advances in Lignin Biodegradation Research. Higuchi T, Chang H-M, Kirk TK. Tokyo: Uni Publishers Company Ltd pp 12–23

    Google Scholar 

  • Sarkanen KV (1971) Precursors and their polymerisation. In: Lignins, occurence, formation sructure and reactions. Sarkanen KV, Ludwig CH (eds) p 95

    Google Scholar 

  • Stephenson PJ (1987) Modern analytical methods — application to cellulose and its derivatives. In: Kennedy JF, Phillips GO, Williams PA (eds) Wood and cellulosics: industrial utilisation, biotechnology, structure and properties. Ellis Horwood Limited, Chichester, England pp 13–21

    Google Scholar 

  • Tanahashi M, Aoki T, Higuchi T (1981) Dehydrogenative polymerisation of monolignols by peroxidase and H2O2 in a dialysis tube. Mokuzai Gakkaishi 27: 116–124

    CAS  Google Scholar 

  • Tanaka K, Nakatsubo F, Higuchi T (1976) Reaction of guaiacyl-glycerol-β-guaiacyl ether with sugars I Mokuzai Gakkaishi 22: 587–590

    Google Scholar 

  • Tanaka K, Nakatsubo F, Higuchi T (1979) Reaction of guaiacyl-glycerol-β-guaiacyl ether with sugars II. Mokuzai Gakkaishi 25: 653–659

    CAS  Google Scholar 

  • Thelen MP, Delmer DP (1986) Gel Electrophoretic separation, detection and characterisation of plant and bacterial UDP-glucose glucosytransferases. Plant Physiol 81: 913–918

    PubMed  CrossRef  CAS  Google Scholar 

  • Waldron KW, Brett CT (1985) Interactions of enzymes involved in glucuronoxylan synthesis in pea (Pisum sativum) epicotuis. Biochem J 213:115–122

    Google Scholar 

  • Whitmore FW (1978) Lignin-protein complex catalysed by peroxidase. Plant Sci Lett 13: 241–245

    CrossRef  CAS  Google Scholar 

  • Wood TM (1985) Aspects of the Biochemistry of Cellulose Degradation in Cellulose and its Derivatives. Kennedy JF, Phillips GO, Wedlock DJ, Williams PA (eds) 173-188 Ellis Horwood

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this chapter

Cite this chapter

Betts, W.B., Dart, R.K., Ball, A.S., Pedlar, S.L. (1991). Biosynthesis and Structure of Lignocellulose. In: Betts, W.B. (eds) Biodegradation. Springer Series in Applied Biology. Springer, London. https://doi.org/10.1007/978-1-4471-3470-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3470-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3472-5

  • Online ISBN: 978-1-4471-3470-1

  • eBook Packages: Springer Book Archive