Skip to main content

Coevolution Between Herbivorous Insects and Plants: Tempo and Orchestration

  • Conference paper
Insect Life Cycles

Abstract

For a herbivorous insect, a plant is more than just a meal — it is a way of life. For some species, just about every aspect of the life-cycle involves the plant host -eating, escape from predators, overwintering and mating, to name a few. Particularly for insects with narrow host ranges, life-cycles must coordinate or the insect misses out not only on a meal but on all those other things that make insect life worth while; thus, there must be tremendous selective pressure on insects to adapt to the peculiarities of their hosts. Walsh (1864, 1865) was among the earliest to recognize the fact that specialization by insect species on different host species is heritable and results from natural selection. A passionate early advocate of Darwinism, Walsh (1867) observed in his studies on Rhagoletis pomonella, the apple-maggot fly, that several populations of the native North American species fed not on the ancestral and typical hawthorn host (Crataegus) but rather on the introduced novel host, apple (Malus). He attributed the existence of intraspecific groups with different host usage patterns to evolution resulting from isolation due to “attachment” to different food plants. The apple-maggot fly is a species that does perform many vital functions — including mating, oviposition, and larval development — in or around its hosts. Walsh offered no explanation, however, for the motive forces behind host shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benson WW, Brown KS, Gilbert LE (1975) Coevolution of plants and herbivores: passion flower butterflies. Evolution 29: 659–680

    Article  Google Scholar 

  • Berenbaum MR (1978) Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores. Science 201: 532–534

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum M (1981) Effects of linear furanocoumarins on an adapted specialist insect (Papilio polyxenes). Ecol Entomol 6: 345–351

    Article  Google Scholar 

  • Berenbaum MR (1990) Evolution of specialization in insect-umbellifer associations. Ann Rev Entomol 35: 319–343

    Article  Google Scholar 

  • Berenbaum MR, Zangerl AR, Nitao JK (1986) Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40: 1215–1228

    Article  CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR, Lee K (1989) Chemical barriers to adaptation by a specialist herbivore. Oecologia 80: 501–506

    Article  Google Scholar 

  • Bernays EA, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–892

    Article  Google Scholar 

  • Brooks DR (1988) Macroevolutionary comparisons of host and parasite phytogenies. Annu Rev Ecol Syst 19: 235–259

    Google Scholar 

  • Brues CT (1924) The specificity of food-plants in the evolution of phytophagous insects. Am Nat 58: 127–144

    Article  Google Scholar 

  • Chapman I (1826) Some observations on the hessian fly; written in the year 1797. Mem Philos Soc Prom Agric 5: 143–153

    Google Scholar 

  • Collins GN, Kempton JH (1917) Breeding sweet corn resistant to the corn earworm. J Agric Res 11: 549–572

    Google Scholar 

  • Cronquist A (1968) The evolution and classification of flowering plants. Houghton Mifflin Co, Boston, MA

    Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races within and between species. Proc R Soc Lond [Biol] 205: 489–511

    Article  CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18: 586–608

    Article  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. Columbia University Press, New York

    Google Scholar 

  • de Emerenciano V, Ferreira ZS, Kaplan MAC, Gottlieb OR (1987) A chemosystematic analysis of tribes of Asteraceae involving sesquiterpene lactones and flavonoids. Phytochemistry 26: 3103–3115

    Article  Google Scholar 

  • Fernandes da Silva MF, Gottlieb OR, Ehrendorfer F (1988) Chemosystematics of the Rutaceae: suggestions for a more natural taxonomy and evolutionary interpretation of the family. Pl Syst Evol 161: 97–134

    Article  Google Scholar 

  • Flor HH (1955) Host-parasite interaction in flax rust — its genetics and other implications. Phytopathology 45: 680–685

    Google Scholar 

  • Flor HH (1956) The complementary genie systems in flax and flax rust. Adv Gen 3: 29–54

    Article  Google Scholar 

  • Fraenkel GS (1959) The raison d’être of secondary plant substances. Science 12: 1466–1470

    Article  Google Scholar 

  • Hafner MS, Nadler SA (1988) Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332: 258–259

    Article  PubMed  CAS  Google Scholar 

  • Hancock DL (1983) Classification of the Papilionidae (Lepidoptera): a phylogenetic approach. Smithersia 2: 1–48

    Google Scholar 

  • Hannemann HJ (1953) Natürliche Gruppierung der Europäischen Arten der Gattung Depressaria, s.1. (Lep. Oecoph.). Mitt Zool Mus Berlin 29: 269–373

    Article  Google Scholar 

  • Harlan SC (1917) A note on resistance to black scale in cotton. West Indian Bull 16: 255–256

    Google Scholar 

  • Hegnauer R (1973) Chemical patterns and relationships of Umbelliferae. In: Heywood VH (ed) The biology and chemistry of the Umbelliferae, pp. 267–278 (Bot J Linn Soc Suppl. 1)

    Google Scholar 

  • Hodges R (1974) The moths of America North of Mexico, Fas 6.2, Gelechioidea Oecophoridae. E. W. Classey, London

    Google Scholar 

  • Hodkinson ID (1988) Coevolution between psyllids (Homoptera: Psylloidea) and rain-forest trees: the first 120 million years. Tropical Rain Forest: The Leeds Symp. pp 187–194

    Google Scholar 

  • Holub M, Toman J, Herout V (1987) The phylogenetic relationships of the Asteraceae and Apiaceae based on phytochemical characters. Biochem Syst Ecol 15: 321–326

    Article  CAS  Google Scholar 

  • Humphries CJ, Cox JM, Nielsen ES (1986) Nothofagus and its parasites: a cladistic approach to coevolution. In: Stone AR, Hawksworth DL (eds) Systematics Association special vol. 32 Coevolution and Systematics, Clarendon Press, Oxford, pp 55–76

    Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34: 611–612

    Article  Google Scholar 

  • Jermy T (1976) Insect-host-plant relationship — co-evolution or sequential evolution? Symp Biol Hung 16: 109–113

    Google Scholar 

  • Jermy T (1984) Evolution of insect/host plant relationships. Am Nat 124: 609–630

    Article  Google Scholar 

  • Klocke JA, Balandrin MF, Barnby MA, Yamasaki RB (1989) Limonoids phenolics and furanocoumarins as insect antifeedants, repellents, and growth inhibitory compounds. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington DC, pp 136–149 (ACS Symp. Series 387)

    Chapter  Google Scholar 

  • Miller JS (1987) Host-plant relationships in the Papilionidae (Lepidoptera): parallel cladogenesis or colonization? Cladistics 3: 105–120

    Article  Google Scholar 

  • Mitter C, Brooks DR (1983) Phylogenetic aspects of coevolution. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer, Sunderland, MA, pp 65–98

    Google Scholar 

  • Mode CJ (1958) A mathematical model for the co-evolution of obligate parasites and their hosts. Evolution 12: 158–165

    Article  Google Scholar 

  • Nault LR, DeLong DM (1980) Evidence for co-evolution of leafhoppers in the genus Dalbulus (Cicadellidae: Homoptera) with maize and its ancestors. Ann Entomol Soc Am 73: 349–353

    Google Scholar 

  • Ramirez RB (1974) Coevolution of Ficus (Moraceae) and Agaonidae (Hymenoptera). Ann MO Bot Gard 61: 770–780

    Article  Google Scholar 

  • Richard D, Guedes M (1983) The Papilionidae (Lepidoptera): co-evolution with the angiosperms. Phyton 23: 117–126

    Google Scholar 

  • Roskam JC (1985) Evolutionary patterns in gall midge-host plant associations (Diptera, Cecidomyii-dae). Tijdschr Entomol 128: 193–213

    Google Scholar 

  • Shields O, Reveal JL (1988) Sequential evolution of EuphUotes (Lycaenidae: ScoUtantidini) on their plant host Eriogonum (Polygonaceae: Eriogonoideae). Biol J Linn Soc 33: 51–93

    Article  Google Scholar 

  • Snelling RO (1941) The place and methods of breeding for insect resistance in cultivated plants. J Econ Entomol 34: 335–367

    Google Scholar 

  • Sperling FAH (1987) Evolution of the Papilio machaon species group in western Canada (Lepidoptera: Papilionidae). Quaest Entomol 23: 198–315

    Google Scholar 

  • Thompson JN (1989) Concepts of coevolution. Trends Ecol Evol 4: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Vassiliev EM (1913) Plants serving as food for some herbivorous insects and the causes for their selection. Stud Exp Ent Stn All-Russian Soc Sugar-Refiners 1912: 63–66

    Google Scholar 

  • Walsh BD (1864) On phytophagic varieties and phytophagous species. Proc Entomol Soc Phila 3: 403–430

    Google Scholar 

  • Walsh BD (1865) On the phytophagic varieties of phytophagous species, with remarks on the unity of coloration of insects. Proc Entomol Soc Phila 5: 194–216

    Google Scholar 

  • Walsh BD (1867) The apple worm and the apple maggot. Am J Hort 2: 338–343

    Google Scholar 

  • Wapshere AJ, Helm KF (1987) Phylloxera and Vitis: an experimentally testable coevolutionary hypothesis. Am J Enol Vitic 38: 216–222

    Google Scholar 

  • Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171: 757–770

    Article  PubMed  CAS  Google Scholar 

  • Wiebes JT (1979) Coevolution of figs and their insect pollinators. Annu Rev Ecol Syst 10: 1–12

    Article  Google Scholar 

  • Zwölfer H, Herbst J (1988) Präadaptation, Wirtskreiserweiterung und Parallel-Cladogenese in der Evolution von phytophagen Insekten. Z Zool Syst Evolutionsforsch 26: 320–340

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this paper

Cite this paper

Berenbaum, M.R. (1990). Coevolution Between Herbivorous Insects and Plants: Tempo and Orchestration. In: Gilbert, F. (eds) Insect Life Cycles. Springer, London. https://doi.org/10.1007/978-1-4471-3464-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3464-0_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3466-4

  • Online ISBN: 978-1-4471-3464-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics