Skip to main content

The Use of Selection to Probe Patterns of Pleiotropy in Fitness Characters

  • Conference paper
Insect Life Cycles

Abstract

One of the more interesting questions in evolutionary biology is to what extent different characters are evolutionarily interdependent because of alleles having effects on multiple characters, or pleiotropy. A number of characters may evolve in a correlated manner, as witness the allometric patterns to be found among many vertebrate attributes (see e.g. Sacher 1959), but this does not necessarily implicate pleiotropy. The correlation could instead be due to correlated patterns of selection, such as an ecological association between two different types of selection. It is conceivable that one predator could select on both sprint speed and endurance in a prey species, producing a correlated response that has nothing to do with any common effects of alleles. Such correlated responses are not considered here. The problem of interest is the ways in which fitness characters can be correlated with each other because of pleiotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, London

    Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegan lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86

    PubMed  CAS  Google Scholar 

  • Graves JL, Rose MR (1990) Flight duration in Drosophila melanogaste selected for postponed senescence. In: Harrison DE (ed) Genetic effects on aging II. Telford Press, pp 59–65

    Google Scholar 

  • Graves JL, Luckinbill LS, Nichols A (1988) Flight duration and wing beat frequency in long- and short-lived Drosophila melanogaster.J Insect Physiol 34: 1021–1026

    Article  Google Scholar 

  • Hiraizumi Y (1985) Genetics of factors affecting the life history of Drosophila melanogaster.I. Female productivity. Genetics 110: 453–464

    Google Scholar 

  • Johnson TE, Wood WB (1982) Genetic analysis of life-span in Caenorhabditis elegans.Proc Natl Acad Sci USA 79: 6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kosuda K (1985) The aging effect on male mating activity in Drosophila melanogaster.Behav Genet 15: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Le Bourg E, Lints FA, Delince J, Lints CV (1988) Reproductive fitness and longevity in Drosophila melanogaster.Exp Gerontol 23: 491–500

    Article  PubMed  Google Scholar 

  • Lenski RE (1988) Experimental studies of pleiotropy and epistasis in Escherichia coli.II. Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42: 433–440

    Article  Google Scholar 

  • Lints FA, Hoste C (1974) The Lansing effect revisited. I. Lifespan. Exp Gerontol 9: 51–69

    Article  PubMed  CAS  Google Scholar 

  • Lints FA, Hoste C (1977) The Lansing effect revisited. II. Cumulative and spontaneously reversible parental age effects on fecundity in Drosophila melanogaster.Evolution 31: 387–404

    Article  Google Scholar 

  • Luckinbill LS, Clare MJ (1985) Selection for life span in Drosophila melanogaste. Heredity 55: 9–18

    Article  PubMed  Google Scholar 

  • Luckinbill LS, Arking R, Clare MJ, Cirocco WC, Buck SA (1984) Selection for delayed senescence in Drosophila melanogaste. Evolution 38: 996–1003

    Article  Google Scholar 

  • Mueller LD (1987) Evolution of accelerated senescence in laboratory populations of Drosophila melanogaste. Proc Natl Acad Sci USA 84: 1974–1977

    Article  PubMed  CAS  Google Scholar 

  • Rose MR (1982) Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48: 63–78

    Article  Google Scholar 

  • Rose MR (1983) Evolution of aging. Rev Biol Res Aging 1: 19–24

    Google Scholar 

  • Rose MR (1984a) Genetic covariation in Drosophil life history: untangling the data. Am Nat 123: 565–569

    Article  Google Scholar 

  • Rose MR (1984b) Laboratory evolution of postponed senescence in Drosophila melanogaste. Evolution 38: 1004–1010

    Article  Google Scholar 

  • Rose MR (1984c) Artificial selection on a fitness-component in Drosophila melanogaste. Evolution 38: 516–526

    Article  Google Scholar 

  • Rose MR (1985) Life history evolution with antagonistic pleiotropy and overlapping generations. Theor Popul Biol 28: 342–358

    Article  Google Scholar 

  • Rose M, Charlesworth B (1980) A test of evolutionary theories of senescence. Nature 287: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Rose MR, Charlesworth B (1981a) Genetics of life-history in Drosophila melanogaste. I. Sib analysis of adult females. Genetics 97: 173–186

    PubMed  CAS  Google Scholar 

  • Rose MR, Charlesworth B (1981b) Genetics of life-history in Drosophila melanogaste. II. Exploratory selection experiments. Genetics 97: 187–196

    PubMed  CAS  Google Scholar 

  • Rose MR, Dorey ML, Coyle AM, Service PM (1984) The morphology of postponed senescence in Drosophila melanogaste. Can J Zool 62: 1576–1580

    Article  Google Scholar 

  • Sacher GA (1959) Relation of lifespan to brain weight and body weight in mammals. In: Wolstenholme GEW, O’Connor M (eds) Ciba Foundation Colloquia on Ageing. Churchill, London, pp 115–133

    Google Scholar 

  • Service PM (1987) Physiological mechanisms of increased stress resistance in Drosophila melanogaste selected for postponed senescence. Physiol Zool 60: 321–326

    Google Scholar 

  • Service PM, Rose MR (1985) Genetic covariation among life-history components: the effect of novel environments. Evolution 39: 943–945

    Article  Google Scholar 

  • Service PM, Hutchinson EW, MacKinley MD, Rose MR (1985) Resistance to environmental stress in Drosophila melanogaste selected for postponed senescence. Physiol Zool 58: 380–389

    Google Scholar 

  • Service PM, Hutchinson EW, Rose MR (1988) Multiple genetic mechanisms for the evolution of senescence. Evolution 42: 708–716

    Article  Google Scholar 

  • Wattiaux JM (1968a) Cumulative parental age effects in Drosophila subobscur. Evolution 22: 406–421

    Article  Google Scholar 

  • Wattiaux JM (1968b) Parental age effects in Drosophila pseudoobscur. Exp Gerontol 3: 55–61

    Article  PubMed  CAS  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411

    Article  Google Scholar 

  • Wright S (1968) Evolution and the genetics of populations, vol. 1, Genetic and biometric foundations. University of Chicago Press, Chicago

    Google Scholar 

  • Wright S (1977) Evolution and the genetics of populations, vol. 3, Experimental results and evolutionary deductions. University of Chicago Press, Chicago

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this paper

Cite this paper

Rose, M.R., Graves, J.L., Hutchinson, E.W. (1990). The Use of Selection to Probe Patterns of Pleiotropy in Fitness Characters. In: Gilbert, F. (eds) Insect Life Cycles. Springer, London. https://doi.org/10.1007/978-1-4471-3464-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3464-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3466-4

  • Online ISBN: 978-1-4471-3464-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics