What Types of Bonds Are Responsible for the Adhesion of Bacteria and Viruses to Native and Artificial Surfaces?

  • Stellan Hjertén
  • Torkel Wadström

Summary

Most bacteria and the surfaces to which they attach are negatively charged. Thus, there is repulsion between the bacterium and the surface target of attachment that must be overcome if adhesion is to occur. This happens most often by hydrophobic interaction, which can be transformed to or reinforced by short range van der Waals bonds. Therefore, an understanding of these hydrophobic interactions is important in understanding bacterial adhesion. The nature of these interactions and how they can be differentiated from electrostatic forces by altering ionic strength and temperature are presented. Methods to determine surface charge and hydrophobicity of bacteria are compared and ways to manipulate these factors are discussed.

Keywords

Entropy Catheter Enthalpy Hexane Polyethylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albertsson PA. Particle fractionation in liquid two-phase systems. The composition of some phase systems and the behaviour of some model particles in them. Applications to the isolation of cell walls from microorganisms. Biochim Biophys Acta 27: 378–95, 1958.CrossRefGoogle Scholar
  2. 2.
    Brinton Jr CC, Lauffer MA. The electrophoresis of viruses, bacteria and cells, and the microscope method of electrophoresis. In: Electrophoresis: Theory, methods, and applications (ed.: Bier M ), pp 427–92. Academic Press Inc., 1959.Google Scholar
  3. 3.
    Gullmar B, Hjertén S, Wadström T. Cell surface charge of lactobacilli and enterococci isolated from pig small intestine as studied by free zone electrophoresis: A methodological study. Microbios 55: 183–92, 1988.Google Scholar
  4. 4.
    Haydon DA. The surface charge of cells and some other small particles as indicated by electrophoresis. II. The interpretation of the electrophoretic charge. Biochim Biophys Acta 50: 457–62, 1961.CrossRefGoogle Scholar
  5. 5.
    Hjertén S. Free zone electrophoresis. Chromatog Rev 9: 122–219, 1967.CrossRefGoogle Scholar
  6. 6.
    Hjertén S. Free zone electrophoresis. Theory, equipment, and applications. In: Methods of Biochemical Analysis (ed.: Glick D), Vol 18, pp 55–79, John Wiley & Sons, Inc., 1970.CrossRefGoogle Scholar
  7. 7.
    Hjertén S. Some general aspects of hydrophobic interaction chromatography. J Chromatogr 87: 325–31, 1973.CrossRefGoogle Scholar
  8. 8.
    Hjertén S. Zone electrophoresis, isoelectric focusing, and displacement electrophoresis (isotachophoresis) in carrier-free solution. In: Methods of Protein Separation (ed.: Catsimpoolas N), Vol 2, pp 219–31, Plenum Publishing Corp., 1976.Google Scholar
  9. 9.
    Hjertén S. Hydrophobic interaction chromatography of proteins on neutral adsorbents. In: Methods of Protein Separation (ed.: Catsimpoolas N), Vol 2, pp 233–43, Plenum Publishing Corp., 1976.Google Scholar
  10. 10.
    Hjertén S. Analysis and purification of cells with the free zone electrophoresis equipment. In: Cell Separation Methods (ed.: Bloemendal H ), pp 117–28, Elsevier/North-Holland Biomedical Press, 1977.Google Scholar
  11. 11.
    Hjertén S. Analytical electrophoresis. In: Topics in Bioelectrochemistry and Bioenergetics (ed.:Milazzo G), Vol 2, pp 89–128, John Wiley Sc Sons, 1978.Google Scholar
  12. 12.
    Hjertén S. Hydrophobic interaction chromatography. In: Advances in Chromatography (eds.: Giddings JC, Grushka E, Cazes J, Brown PR), Vol 19, pp 111–23, Marcel Dekker, Inc., 1980.Google Scholar
  13. 13.
    Hjertén S. Hydrophobic interaction chromatography of proteins, nucleic acids, viruses, and cells on noncharged amphiphilic gels. In: Methods of biochemical analysis (ed.: Glick D), Vol 27, pp 89–108, John Wiley & Sons, Inc., 1981.CrossRefGoogle Scholar
  14. 14.
    Hjertén S, Elenbring K, Kilâr F, Liao J-1, Chen A, Siebert C, ZhuM-d. Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J Chromatogr 403: 47–61, 1987.CrossRefGoogle Scholar
  15. 15.
    Kjelleberg S, Lagercrantz C, Larsson TH. Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid. FEMS Microbiol Lett 7: 414, 1980.CrossRefGoogle Scholar
  16. 16.
    Lindahl M, Faris A, Wadström T, Hjertén S. A newtest based on “salting out” to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 677: 471–6, 1981.CrossRefGoogle Scholar
  17. 17.
    Ljungh A, Hjertén S, Wadström T. High surface hydrophobicity of autoaggregating Staphylococcusaureus strains isolated from human infections studied with the salt aggregation test. Infect Immun 47: 522–6, 1985.Google Scholar
  18. 18.
    Ludwicka A, Jansen B, Wadström T, Pulverer G. Attachment of staphylococci to various synthetic polymers. Zbl Bakt Hyg A 256: 479–489, 1984.Google Scholar
  19. 19.
    Ludwicka A, Switalski LM, Lundin A, Pulverer G, Wadström T. Bioluminescent assay for measurement of bacterial attachment to polyethylene. J Microbiol Meth 4: 169–77, 1985.CrossRefGoogle Scholar
  20. 20.
    Mamo W, Rozgonyi F, Brown A, Hjertén S, Wadström T. Cell surface hydrophobicity and charge of Staphylococcus aureusand coagulase-negative staphylococci from bovine mastitis. J Appl Bact 62: 241–9, 1987.CrossRefGoogle Scholar
  21. 21.
    Mamo W, Rozgonyi F, Hjertén S, Wadström T. Effect of milk on surface properties of Staphylococcus aureusfrom bovine mastitis. FEMS Microbiol Lett 48: 195–200, 1987.CrossRefGoogle Scholar
  22. 22.
    Nilsson BO, Hjertén S. Electrophoretic quantification of the changes in the average net negative surface charge density of mouse blastocysts implanting in vivo and in vitro. Biology of Reproduction 27: 485–93, 1982.CrossRefGoogle Scholar
  23. 23.
    Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9: 29–33, 1980.CrossRefGoogle Scholar
  24. 24.
    Rosenberg M. Ammonium sulphate enhances adherence of Escherichia coliJ-5 to hydrocarbon and polystyrene. FEMS Microbiol Lett 25: 41–5, 1984.CrossRefGoogle Scholar
  25. 25.
    Rozgonyi F, Szitha KR, Hjertén S, Wadström T. Standardization of salt aggregation test for reproducible determination of cell-suface hydrophobicity with special reference to Staphylococcusspecies. J Appl Bact 59: 451–7, 1985.CrossRefGoogle Scholar
  26. 26.
    Rozgonyi F, Szitha KR, Ljungh A, Baloda SB, Hjertén S, Wadström T. Improvement of the salt aggregation test to study bacterial cell-surface hydrophobicity. FEMS Microbiol Lett 30: 131–8, 1985.CrossRefGoogle Scholar
  27. 27.
    Smith TC. The effect of lanthanum on electrophoretic mobility and passive cation movements of the Ehrlich ascites tumor cell. J Cell Ph ysiol 87: 47–52, 1975.CrossRefGoogle Scholar
  28. 28.
    Smyth CJ, Jonsson P, Olsson E, Söderlind O, Rosengren J, Hjertén S, Wadström T. Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coliwith or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun 22: 462–72, 1978.Google Scholar
  29. 29.
    Stendahl O, Edebo L, Magnusson K-E, Tagesson C, Hjertén S. Surface-charge characteristics of smooth and rough Salmonella typhimuriumbacteria determined by aqueous two-phase partitioning and free zone electrophoresis. Acta Path Microbiol Scand Sect B 85: 334–40, 1977.Google Scholar
  30. 30.
    Tanford C. The hydrophobic effect: Formation of micelles and biological membranes. 2nd ed. John Wiley & Sons, Inc. 1980.Google Scholar
  31. 31.
    Todd P, Hjertén S. Free zone electrophoresis of animal cells. I. Experiments on cell-cell interactions. In: Cell Electrophoresis (eds.: Schutt W, Klinkmann H ), pp 2331, Walter de Gruyter & Co., 1985.Google Scholar
  32. 32.
    Tylewska SK, Hjertön S, Wadström T. Hydrophobic properties of Streptococcus pyogenes related to M protein: Decrease of surface hydrophobicity and epithelial cell binding by antibiotics. In: Current chemotherapy and infectious disease, pp 788–90,1980.Google Scholar
  33. 33.
    Tylewska S, Hjertén S, Wadström T. Effect of subinhibitory concentrations of antibiotics on the adhesion of Streptococcus pyogenesto pharyngeal epithelial cells. Antimicrob Agents Chemother 20: 563–6, 1981.Google Scholar
  34. 34.
    Tylewska SK, Wadström T, Hjertén S. The effect of subinhibitory concentrations of penicillin and rifampicin on bacterial cell surface hydrophobicity and on binding to pharyngeal epithelial cells. Correspondence. J Antimicrob Chemother 6: 292–4, 1980.CrossRefGoogle Scholar
  35. 35.
    Wadström T, Bjömberg S, Hjertén S. Hydrophobized wound dressing in the treatment of experimental Staphylococcusaureus infections in the young pig. Acta Path Microbiol Immunol Scand Sect B 93: 359–63, 1985.Google Scholar
  36. 36.
    Wadström T, Faris A, Hjertén S. Adhesion of enteropathogenic bacteria to hydrophobic surfaces. In: Microbial Adhesion to Surfaces (eds.: Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B ), pp 537–40, Ellis Horwood Ltd, 1980.Google Scholar
  37. 37.
    Wadström T, Fans A, Lindahl M, Hjertén S, Agerup B. A new principle for prevention of diarrhea caused by enterotoxigenic Escherichia coli(ETEC) possessing colonization factor antigen (CFA/I). Scand J Infect Dis 13: 129–32, 1981.Google Scholar
  38. 38.
    Wadström T, Faris A, Lindahl M, Lövgren K, Agerup B, Hjertön S. Prevention of enterotoxigenic E. coli (ETEC) diarrhea by hydrophobic gels: A preliminary study.Google Scholar
  39. 39.
    Wadström T, Hjertén S, Jonsson P, Tylewska S. Hydrophobic surface properties of Staphylococcus aureus, Staphylococcus saprophyticus, and Streptococcus pyogenes: A comparative study. In: Staphylococci and Staphylococcal Infections (ed.: Jeljaszewicz J), Zbl Bakt Supp110, pp 441–7, Gustav Fischer Verlag, 1981.Google Scholar
  40. 40.
    Wadström T, Ljungh A, Jonsson C-E, Hjertén S. Be-handling med hydrofoberade kompresser päskyndar läkning av infekterade sär Läkartidningen 83: 30–1, 1986.Google Scholar
  41. 41.
    Wadström T, Trust TJ. Bacterial surface lectins. Med Microbiol 4: 287–334, 1984.Google Scholar
  42. 42.
    Bacterial adhesion. Mechanisms and physiological significance. (Eds.: Savage DC, Fletcher M) Plenum Press, 1985.Google Scholar

Copyright information

© Springer-Verlag London Limited 1990

Authors and Affiliations

  • Stellan Hjertén
  • Torkel Wadström

There are no affiliations available

Personalised recommendations