Skip to main content

Normal Bone Remodelling and Its Disruption in Metastatic Bone Disease

  • Chapter
Bone Metastases

Abstract

Bone is a metabolically active tissue which is continually being remodelled by a process involving the removal of microscopic packets of calcified matrix and their subsequent replacement at the same site by new bone. This normal physiological process can be disturbed by the direct local and/or the distant systemic effects of tumour cell products released by neoplastic cells. Recent research has indicated that many of the factors that may be involved in the regulation of bone remodelling and are produced by normal cells in the bone micro-environment can also be produced in excessive amounts by neoplastic cells. Thus metastatic malignant cells could directly interfere with the function of normal bone cells and so disrupt the bone micro-architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baron R, Vignery A, Horowitz M (1983) Lymphocytes, macrophages and the regulation of bone remodelling. In: Peck WA (ed) Bone and mineral research, Annual 2. Elsevier, New York, pp 175–246

    Google Scholar 

  • Baron R, Neff L, Roy C, Boivert A, Caplan M (1986) Evidence of a high and specific concentration of (Na+, K+)ATPase in the plasma membrane of the osteoclast. Cell 46:311–316

    Article  PubMed  CAS  Google Scholar 

  • Berrettoni BA, Carter JR (1986) Mechanisms of cancer metastasis to bone. J Bone Joint Surg [Am] 68:308–312

    CAS  Google Scholar 

  • Blaguiere RM, Guyer DM, Buchanan RB, Gallagher PJ (1982) Sclerotic bone deposits in myeloma. Br J Radiol 55:591–593

    Article  Google Scholar 

  • Boyce BF (1990) Bone biopsy and histomorphometry in metabolic bone disease. In: Stevenson JC (ed) New techniques in metabolic bone disease. Wright, London, pp 110–131

    Google Scholar 

  • Boyce BF, Aufdemorte TB, Garrett IR, Yates AJP, Mundy GR (1989) Effects of interleukin-1 on bone turnover in normal mice. Endocrinology 125:1142–1150

    Article  PubMed  CAS  Google Scholar 

  • Brenner DE, Harvey HA, Lipton A, Demers L (1982) A study of prostaglandin E2, parathormone and response to indomethacin in patients with hypercalcemia of malignancy. Cancer 49:556–561

    Article  PubMed  CAS  Google Scholar 

  • Canalis E (1980) Effect of insulin-like growth factor I on DNA and protein synthesis in cultured rat calvaria. J Clin Invest 66:709–719

    Article  PubMed  CAS  Google Scholar 

  • Canalis E (1986) Interleukin-1 has independent effects on DNA and collagen synthesis in culture of rat calvariae. Endocrinology 118:74–81

    Article  PubMed  CAS  Google Scholar 

  • Canalis E (1987) Effects of tumor necrosis factor on bone formation in vitro. Endocrinology 121:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, McCarthy T, Centrella M (1988) Growth factors and the regulation of bone remodelling. J Clin Invest 81:277–281

    Article  PubMed  CAS  Google Scholar 

  • Cavailles V, Garcia M, Rochefort H (1989) Regulation of cathepsin D and P52 gene expression by growth factors in MCF-7 human breast cancer cells. Mol Endocrinol 3:552–558

    Article  PubMed  CAS  Google Scholar 

  • Cawston TE, Galloway WA, Mercer A, Murphy G, Reynolds JJ (1981) Purification of rabbit bone inhibitor of collagenase. Biochem J 195:159–165

    PubMed  CAS  Google Scholar 

  • Centrella M, Canalis E (1985) Transforming and non-transforming growth factors are present in medium conditioned by fetal rat calvariae. Proc Natl Acad Sci USA 82:7335–7339

    Article  PubMed  CAS  Google Scholar 

  • Centrella M, Canalis A (1987) Isolation of EGF-dependent transforming growth factor (TGF-ß-like) activity from culture medium conditioned by fetal rat calvariae. J Bone Mineral Res 2:29–36

    Article  CAS  Google Scholar 

  • Centrella M, Massagué J, Canalis E (1986) Human platelet-derived transforming growth factor-ß stimulates parameters of bone growth in fetal rat calvariae. Endocrinology 119:2306–2312

    Article  PubMed  CAS  Google Scholar 

  • Centrella M, McCarthy T, Canalis E (1987) Transforming growth factor ß is a bifunctional regulator of replication and collagen synthesis in osteoblast enriched cell cultures from fetal rat bone. J Biol Chem 262:2869–2874

    PubMed  CAS  Google Scholar 

  • Chackal-Roy M, Niemeyer C, Moore M, Zetter BR (1989) Stimulation of human prostatic carcinoma cell growth by factors present in human bone marrow. J Clin Invest 84:43–50

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ (1980) The cellular basis of bone resorption. Clin Orthop Rel Res 151:283–293

    Google Scholar 

  • Chambers TJ (1982) Osteoblasts release osteoclasts from calcitonin-induced quiescence. J Cell Sei 57:247–260

    CAS  Google Scholar 

  • Chambers TJ (1985) The pathobiology of the osteoclast. J Clin Pathol 38:241–252

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Ali N (1983) Inhibition of osteoclastic motility by prostaglandins I2, E1, E2 and 6-oxo-Ej. J Pathol 139:383–397

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Fuller K (1985) Bone cells predispose endosteal surfaces to resorption by exposure of bone mineral to osteoclastic contact. J Cell Sci 76:155–163

    PubMed  CAS  Google Scholar 

  • Chambers TJ, McSheehy PMJ, Thomson BM, Fuller K (1985) The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 116:234–239

    Article  PubMed  CAS  Google Scholar 

  • Delaisse JM, Boyde A, McConnachie E et al. (1987) The effects of inhibitors of cysteine-proteinases and collagenase on the resorptive activity of isolated osteoclasts. Bone 8:305–313

    Article  PubMed  CAS  Google Scholar 

  • Eilon G, Mundy GR (1978) Direct resorption of bone by human breast cancer cells in vitro. Nature 276:726–728

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF (1986) Normal and pathological remodelling of human trabecular bone: Three dimensional reconstruction of the remodelling sequence in normals and in metabolic bone disease. Endocr Rev 7:379–408

    Article  PubMed  CAS  Google Scholar 

  • Felix R, Elford PR, Stoercklé C et al. (1988) Production of haemopoietic growth factors by bone tissue and bone cells in culture. J Bone Mineral Res 3:27–36

    Article  CAS  Google Scholar 

  • Feyen JHM, Elford P, Di Padova FE, Trechsel U (1989) Interleukin-6 is produced by bone and modulated by parathyroid hormone. J Bone Miner Res 4:633–638

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Giscelli C, Friedrich W et al. (1986) Bone marrow transplantation for immunodeficiencies and osteopetrosis: European survey (1968–85). Lancet ii:1080–1084

    Article  Google Scholar 

  • Frost HM (1969) Tetracycline-based histological analysis of bone remodelling. Calcif Tissue Res 3:211–237

    Article  PubMed  CAS  Google Scholar 

  • Frost HM (1973) The origin and nature of transients in human bone remodelling dynamics. In: Frame B, Parfitt AM, Duncan H (eds) Clinical aspects of metabolic bone disease. Excerpta Medica; Amsterdam, pp 124–137

    Google Scholar 

  • Garrett IR, Durie BGM, Nedwin GE et al. (1987) Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N Engl J Med 317:526–532

    Article  PubMed  CAS  Google Scholar 

  • Gay CV, Ito MB, Schraer H (1984) Carbonic anhydrase activity in isolated osteoclasts. Metab Bone Dis Relat Res 5:33–39

    Article  CAS  Google Scholar 

  • Gehron-Robey PG, Young MF, Flanders KC et al. (1987) Osteoblasts synthesize and respond to transforming growth factor-type ß(TGF-ß) in vitro. J Cell Biol 105:457–463

    Article  Google Scholar 

  • Gowen M, Wood DD, Ihrie EJ, McGuire NKB, Russell RGG (1983) An interleukin-I-like factor stimulates bone resorption in vitro. Nature 306:378–380

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA, Lingelbach SR, Partridge NC, Martin TJ (1985) Regulation of plasminogen activator production by bone-resorbing hormones in normal and malignant osteoblasts. Endocrinology 116:2186–2191

    Article  PubMed  CAS  Google Scholar 

  • Hauschka PV, Maurakos AE, Lafrati MD, Doleman SE, Klagsbrun M (1986) Growth factors in bone matrix. J Biol Chem 261:12665–12674

    PubMed  CAS  Google Scholar 

  • Heath JK, Atkinson SJ, Meikle MC, Reynolds JJ (1984) Mouse osteoblasts synthesize collagenase in response to bone resorbing agents. Biochim Biophys Acta 802:151–154

    Article  PubMed  CAS  Google Scholar 

  • Heldin C-H, Johnsson A, Wennergren S, Wernstedt C, Bedsholtz C, Westermark B (1986) A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature 319:511–514

    Article  PubMed  CAS  Google Scholar 

  • Horowitz MC, Coleman DL, Flood PM, Kupper TS, Jilka RS (1989a) Parathyroid hormone and lipopolysaccharide induce murine osteoblast-like cells to secrete a cytokine indistinguishable from granulocyte-macrophage colony-stimulating factor. J Clin Invest 83:149–157

    Article  PubMed  CAS  Google Scholar 

  • Horowitz MC, Coleman DL, Ryaby JT, Einhorn TA (1989b) Osteotropic agents induce the differential secretion of granulocyte-macrophage colony-stimulating factor by the osteoblast cell line MC3T3-E1. J Bone Miner Res 4:911–921

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson KJ, Harrod J, Gowen M et al. (1986) Human recombinant transforming growth factor alpha stimulates bone resorption and inhibits formation in vitro. Proc Natl Acad Sci USA 83:2228–2232

    Article  PubMed  CAS  Google Scholar 

  • Jacobs SC, Pikna D, Lawson RK (1979) Prostatic osteoblastic factor. Invest Urol 17:195–198

    PubMed  CAS  Google Scholar 

  • Koutsilieris M, Rabbini SA, Bennett HPJ, Goltzman D (1987) Characteristics of prostate-derived growth factors for cells of the osteoblast phenotype. J Clin Invest 80:941–946

    Article  PubMed  CAS  Google Scholar 

  • Martin TJ, Partridge NC, Greaves M, Atkins D, Ibbotson KJ (1979) Prostaglandin effects on bone and role in cancer hypercalcaemia. In: Maclntyre I, Szelke M (eds) Molecular Endocrinology Elsevier, North-Holland, Amsterdam, pp 251–264

    Google Scholar 

  • McBride WH (1986) Phenotype and functions of intratumoral macrophages. Biochim Biophys Acta 865:27–41

    PubMed  CAS  Google Scholar 

  • McSheehy PMJ, Chambers TJ (1986) Osteoblast-like cells in the presence of parathyroid hormone release soluble factors that stimulate osteoclastic bone resorption. Endocrinology 119:1654–1659

    Article  PubMed  CAS  Google Scholar 

  • McSheehy PMJ, Chambers TJ (1987) 1,25-dihydroxy vitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoclastic bone resorption. J Clin Invest 80:425–429

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D (1986) The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67:257–267

    PubMed  CAS  Google Scholar 

  • Mills BG, Yabe H, Singer FR (1988) Osteoclasts in human osteopetrosis contain viral-nucleocapsid-like nuclear inclusions. J Bone Miner Res 3:101–106

    Article  PubMed  CAS  Google Scholar 

  • Mundy GR (1988) Hypercalcemia of malignancy revisited. J Clin Invest 82:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nathan CF (1987) Secretory products of macrophages J Clin Invest 79:319–326

    Article  PubMed  CAS  Google Scholar 

  • Nijweide PJ, Burger EH, Feyen JM (1986) Cells of bone: proliferation, differentiation and hormonal regulation. Physiol Rev 66:855–886

    PubMed  CAS  Google Scholar 

  • Noda M, Camilliere JJ (1989) In vivo stimulation of bone formation by transforming growth factor-ß. Endocrinology 124:2991–2994

    Article  PubMed  CAS  Google Scholar 

  • Oreffo ROC, Mundy GR, Seyedin SM, Bonewald LF (1989) Activation of the bone-derived TGFß complex by isolated osteoclasts. Biochem Biophys Res Commun 158:817–823

    Article  PubMed  CAS  Google Scholar 

  • Oreffo ROC, Bonewald L, Kukita A et al. (1990) Inhibitory effects of the bone-derived growth factors, osteoinductive factors and TGFß on isolated osteoclasts. Endocrinology 126:3067–3075

    Article  Google Scholar 

  • Owen M (1980) The origin of bone cells in the postnatal organism. Arthritis Rheum 23:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Partridge NC, Jeffrey JJ, Ehlick LS et al. (1987) Hormonal regulation of the production of collagenase and a collagenase inhibitor activity by rat osteogenic sarcoma cells. Endocrinology 120:1956–1962

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter J, D’Souza SM, Mundy GR (1987) Effects of transforming growth factor-ß on osteoblastic osteosarcoma cells. Endocrinology 121:212–218

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter JP, Seyedin SM, Mundy GR (1988) Transforming growth factor beta inhibits bone resorption in fetal rat long bone cultures. J Clin Invest 82:680–685

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter J, Bonewald L, Mundy GR (1990) Characterization of the latent transforming growth factor ß complex in bone. J Bone Miner Res 5:49–58

    Article  PubMed  CAS  Google Scholar 

  • Rodan GA Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption -a hypothesis. Calcif Tissue Int 33:349–351

    Article  PubMed  CAS  Google Scholar 

  • Sabatini M, Boyce B, Aufdemorte T, Bonewald L, Mundy G (1988) Infusions of recombinant human interleukins 1-and 1-ß cause hypercalcemia in normal mice. Proc Natl Acad Sci USA 85:5235–5239

    Article  PubMed  CAS  Google Scholar 

  • Sabatini M, Bonewald L, Chavez J, Mundy GR (1989) Production of GM-CSF by a human tumour associated with leukocytosis and hypercalcemia induces cytokine production by host cells. J Bone Miner Res [Suppl 1] 4:S155 (abstr)

    Google Scholar 

  • Sabatini M, Chavez J, Mundy GR, Bonewald LF (1990) Stimulation of tumour necrosis factor release from monocytic cells by the A375 human melanoma via granulocyte-macrophage colony stimulating factor. Cancer Res 50:2673–2678

    PubMed  CAS  Google Scholar 

  • Sakamoto S, Sakamoto M (1986) Bone collagenase, osteoblasts and cell-mediated bone resorption. In: Peck WA (Ed) Bone and mineral research vol 4 Elsevier, Amsterdam, pp 49–102

    Google Scholar 

  • Sato K, Fujii Y, Kasano K, Tsushima T, Shizume K (1988) Production of interleukin-1 alpha and a parathyroid hormone-like factor by a squamous cell carcinoma of oesophagus (EC-G1) derived from a patient with hypercalcemia. J Clin Endocrinol Metab 67:592–621

    Article  PubMed  CAS  Google Scholar 

  • Shen V, Rifas L, Kohler G, Peck WA (1986) Prostaglandins change cell shape and increase intercellular gap junctions in osteoblasts cultured from rat fetal calvaria. J Bone Miner Res 1:243–249

    Article  PubMed  CAS  Google Scholar 

  • Simpson E, Harrod J, Eilan G et al. (1985) Identification of a messenger ribonucleic acid fraction in human prostatic cancer cells coding for a novel osteoblast-stimulating factor. Endocrinology 117:1615–1620

    Article  PubMed  CAS  Google Scholar 

  • Tashjian Jr AH, Hohmann EL, Antonaides HN et al. (1982) Platelet-derived growth factor stimulates bone resorption via a prostaglandin-mediated mechanism. Endocrinology 111: 118–124

    Article  PubMed  CAS  Google Scholar 

  • Tashjian Jr AH, Voelkel EF, Lazzaro M et al. (1985) and ß transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Proc Natl Acad Sci USA 82:4535–4538

    Article  PubMed  CAS  Google Scholar 

  • Tashjian Jr AH, Voelkel EF, Lloyd W, Derynck R, Winkler ME, Levine L (1986) Actions of growth factors on plasma calcium: epidermal growth factor and human transforming growth factor-alpha cause elevation of plasma calcium in mice. J Clin Invest 78:1405–1409

    Article  PubMed  CAS  Google Scholar 

  • Tashjian Jr AH, Voelkel EF, Lazzaro M et al. (1987) Tumour necrosis factor-(cachectin) stimulates bone resorption in mouse calvaria via a prostaglandin-mediated mechanism. Endocrinology 120:2029–2036

    Article  PubMed  CAS  Google Scholar 

  • Thomson BM, Saklatvala J, Chambers TJ (1986) Osteoblasts mediate interleukin-I responsiveness of bone resorption by rat osteoclasts. J Exp Med 164:104–112

    Article  PubMed  CAS  Google Scholar 

  • Thomson BM, Mundy GR, Chambers TJ (1987) Tumour necrosis factors and ß induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 138:775–779

    PubMed  CAS  Google Scholar 

  • Travers MT, Barrett-Lee PJ, Berger U et al. (1988) Growth factor expression in normal, benign and malignant breast tissue. Br Med J 296:1621–1624

    Article  CAS  Google Scholar 

  • Valentin Opran A, Edouard C, Charhon S, Meunier PJ (1980) Histomorphometic analysis of iliac bone metastases of prostatic origin. In: Donath A, Huber H (eds) Bone and tumours. Medicine et hygiene, Geneve, pp 24–28

    Google Scholar 

  • Wergedal JE, Mohan S, Taylor AK et al. (1986) Human skeletal growth factor is produced by human osteoblast-like cells in culture. Biochim Biophys Acta 889:163–170

    Article  PubMed  CAS  Google Scholar 

  • Wergedal JE, Mohan S, Lundy M et al. (1990) Skeletal growth factor and other growth factors known to be present in bone matrix stimulate proliferation and protein synthesis in human bone cells. J Bone Miner Res 5:179–186

    Article  PubMed  CAS  Google Scholar 

  • Wo Z, Bonewald LF, Oreffo ROC et al. (1990) The potential role of procathepsin D secreted by breast cancer cells in bone resorption. In: Cohn DV, Glorieux FH, Martin TJ (eds) Calcium regulation and bone metabolism. Elsevier, North-Holland, Amsterdam, pp 304–310

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this chapter

Cite this chapter

Boyce, B.F. (1991). Normal Bone Remodelling and Its Disruption in Metastatic Bone Disease. In: Rubens, R.D., Fogelman, I. (eds) Bone Metastases. Springer, London. https://doi.org/10.1007/978-1-4471-3254-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3254-7_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3256-1

  • Online ISBN: 978-1-4471-3254-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics