The Measurement of Red Blood Cell Deformability

  • J. C. Barbenel
Conference paper

Abstract

At rest the normal red blood cell is a biconcave disc, but in flowing blood the cell may assume a variety of shapes, suggesting that it is highly deformable. The ability to undergo large deformations when subjected to stresses allows the red blood cells to pass through capillaries narrower than the resting erythrocyte diameter, and ensures that the blood remains a fluid at physiological haematocrits. The clinical importance of both these factors has led to a growing interest in the assessment or measurement of red-cell deformability. There are, however, a multiplicity of techniques in use, and the relationship between them and the parameters they measure is often unclear.

Keywords

Permeability Filtration Dextran Fibrinogen Polycarbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessis M, Mohondas M (1975) Diffractometric method for measurement of cellular deformability. Blood Cells 1: 307–327Google Scholar
  2. Chien S (1975) Biophysical behaviour of red cells in suspension. In: Surgenor D M (ed) Red blood cells II. Academic Press, New York, pp 1031–1133Google Scholar
  3. Chien S, Usami S, Dallenback R J, Gregerson M I (1967) Blood viscosity. Science 157: 825–831 Chien S, Luse S A, Bryant C A (1971) Haemolysis during filtration through micropores. A scanning electron microscopic and haemorheologic correlation. Microvasc Res 3: 183–202CrossRefGoogle Scholar
  4. Chien S, Usami S, Dallenback R J, Gregerson M I (1967) Blood viscosity. Science 157: 825–831 Chien S, Luse S A, Bryant C A (1971) Haemolysis during filtration through micropores. A scanning electron microscopic and haemorheologic correlation. Microvasc Res 3: 183–202CrossRefGoogle Scholar
  5. Dintenfass L (1968) Internal viscosity of the red cell and a blood viscosity equation. Nature 219: 956–958PubMedCrossRefGoogle Scholar
  6. Dintenfass L (1971) Blood microrheology. Butterworth, LondonGoogle Scholar
  7. Dintenfass L (1975) Internal viscosity of the red cell. Biorheology 12: 253–256PubMedGoogle Scholar
  8. Einstein A (1906) Eine neue Bestimmung der Molekuldimensionen. Ann Physik Lpz 19: 289CrossRefGoogle Scholar
  9. Evans E A (1973) New membrane concept applied to the analysis of fluid shear-and micropipettedeformed red blood cells. Biophys J 13: 941–954PubMedCrossRefGoogle Scholar
  10. Fisher T M, Stöhr M, Schmid-Schönbein H (1978) Red blood cell (RBC) microrheology. In: Huang C R, Copley A L (eds) Biorheology, AICheE Symposium, No. 182, 74: 38–45Google Scholar
  11. Fung Y C, Tong P (1968) Theory of sphering of red blood cells. Biophys J 8: 175–198PubMedCrossRefGoogle Scholar
  12. Goldsmith H L (1968) The microrheology of red blood cell suspensions. J Gen Physiol 52: 5s - 27sCrossRefGoogle Scholar
  13. Goldsmith H L (1971) Deformation of human red cells in tube flow. Biorheology 7: 235–242PubMedGoogle Scholar
  14. Gregerson M I, Bryant C A, Hammerle W E, Usami S, Chien S (1967) Flow characteristics of human erythrocytes through polycarbonate sieve. Science 157: 825–827CrossRefGoogle Scholar
  15. Hochmuth R M, Worthy P R, Smith S, Evans E A (1978) Viscosity of red cell membrane. In: Huang C R, Copley A L (eds) Biorheology, AICHeE Symposium, No. 182, 74: 1–3Google Scholar
  16. Hoeber T W, Hochmuth R M (1970) Measurement of red blood cell modules of elasticity by in vitro and model cell experiments. Trans ASME, Ser D. 92: 604–621Google Scholar
  17. Katchalsky A, Kedam D, Klibanshy C, De Vreis A (1960) Rheological considerations of haemolysing red blood cells. In: Copley AL, Stainsby A (eds) Flow properties of blood and other biological systems. Pergamon Press, Oxford, pp 155–169Google Scholar
  18. Lessin L S, Kurantsin-Mills J, Weems H B (1977) Deformability of normal and sickle erythrocytes in a pressure-flow filtration system. Blood Cells 3: 241–262Google Scholar
  19. Prothero J W, Burton A C (1962) The physics of blood flow in capillaries II. Biophys J 2: 199–213PubMedCrossRefGoogle Scholar
  20. Rampling M W, Sirs J A (1972) The interaction of fibrinogen and dextrans with erythrocytes. J Physiol 223: 199–212PubMedGoogle Scholar
  21. Rand R P, Burton A C (1964) Mechanical properties of the red cell membrane I. Membrane stiffness and intracellular pressure. Biophys J 4: 115–135PubMedCrossRefGoogle Scholar
  22. Reid H L, Barnes A J, Lock P J, Dormandy J A, Dormandy T L (1976) A simple method of measuring erythrocyte deformability. J Clin Pathol 29: 855–858PubMedCrossRefGoogle Scholar
  23. Schmid-Schönbein H, Wells R (1969) Fluid drop-like transition of erythrocytes under shear. Science 165: 288–291CrossRefGoogle Scholar
  24. Sirs J A (1968) The measurement of the haematocrit and flexibility of erythrocytes with a centrifuge. Biorheology 5: 1–14PubMedGoogle Scholar
  25. Sirs J A (1970) Automatic recording of the rate of packing of erythrocytes in blood by a centrifuge. Phys Med Biol 15: 9–14PubMedCrossRefGoogle Scholar
  26. Sirs J A (1970) Automatic recording of the rate of packing of erythrocytes in blood by a centrifuge. Phys Med Biol 15: 9–14PubMedCrossRefGoogle Scholar
  27. Sung K-L P, Chien S (1978) Viscous and elastic properties of human red cell membrane. In: Huang C R, Copley A L (eds) Biorheology, AICHeE Symposium No. 182, 74: 81–84Google Scholar
  28. Sutera S P, Mehrjardi M H (1975) Deformation and fragmentation of human red blood cells in turbulent shear. Biophys J 15: 1–10PubMedCrossRefGoogle Scholar
  29. Taylor G I (1932) The Viscosity of a fluid containing small drops of another fluid. Proc R Soc A 138: 41–48CrossRefGoogle Scholar
  30. Teitel P (1977) Basic principles of the ‘filtrability test’ and analysis of erythrocyte flow behaviour. Blood Cells 3: 55–70Google Scholar
  31. Usami S, Chien S, Gregersen M I (1971) Viscometric behaviour of young and aged erythrocytes. In: Copley A L (ed) Haemorheology. Pergamon Press, Oxford, pp 266–270Google Scholar
  32. Whitmore R L (1968) Rheology of the circulation. Pergamon Press, OxfordGoogle Scholar

Copyright information

© Spring-Verlag Berling Heidelberg 1981

Authors and Affiliations

  • J. C. Barbenel

There are no affiliations available

Personalised recommendations