Skip to main content

Abstract

One of the remarkable properties of blood is its ability to flow with a viscosity only a few times greater than water, though approximately half its volume is composed of cells. If the cellular components were rigid spheres, blood would have the consistency of a solid (Taylor et al., 1965). By hardening cells with formalin or acetaldehyde, Kuroda et al. (1958) and Seaman (1966) found that the viscosity was increased by an order of magnitude. It has also been demonstrated (Chien et al., 1967) that the whole-blood viscosity is Newtonian in these circumstances. The viscosity of normal whole blood is non-Newtonian with a magnitude of about 5 cP (mPa. s) at 37°C and high shear rates. On this basis it has become accepted that the flexibility of red blood cells and the plasma viscosity are the main factors which determine the viscosity of blood at high shear rates, though quantitative evidence for this hypothesis is lacking in the range of viscosity between these two extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brinkman R C (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20: 571–578

    Article  CAS  Google Scholar 

  • Chien S, Usami S, Dellenbeck R J, Gregerson M K (1967) Blood viscosity: Influence of erythrocyte deformation. Science 157: 825–831

    Article  PubMed  Google Scholar 

  • Chien S, Luse S A, Jan K M, Usami S, Miller L H, Fremont H (1971) Effects of macromolecules on the rheology and ultrastructure of red cell suspensions. In: Proc. Sixth Eur. Conf. Microcirculation. Basel, Karger, pp 29–34

    Google Scholar 

  • Cokelet G R, Meiselman H J (1968) Rheological comparison of haemoglobin solutions and erythrocyte suspensions. Science 162: 275–277

    Article  PubMed  CAS  Google Scholar 

  • Dintenfass L (1968a) Internal viscosity of the red cell and a blood viscosity equation. Nature 219: 956–958

    Article  PubMed  CAS  Google Scholar 

  • Dintenfass L (1968b) Viscosity of blood at high haematocrits measured in microcapillary (parallel-plate) viscometers of r = 3–30 microns. In: Copley A L (ed) Hemorheology. Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, pp 197–209

    Google Scholar 

  • Dintenfass L (1971) Blood Microrheology. Butterworths, London, p 86

    Google Scholar 

  • Dintenfass L (1975) Internal viscosity of the red cell, problems associated with definition of plasma viscosity and effective volume of red cells in the blood viscosity equation. Biorheology 12: 253–256

    PubMed  CAS  Google Scholar 

  • Dupont P A, Sirs J A (1977) The relationship of plasma fibrinogen, erythrocyte flexibility and blood viscosity. Thromb Haemostas 28: 660–667

    Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Molekuldimensionen. Ann Physik Lpz 19: 289–306

    Article  CAS  Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner Arbeit: “Eine neue Bestimmung der Molekuldimensionen”. Ann Physik Lpz 34: 591–592

    Article  CAS  Google Scholar 

  • Gregerson M I, Peric B, Chien S, Sinclair D, Chang C, Taylor H (1965) Viscosity of blood at low shear rates. In: Copley A L (ed) Symposium on Biorheology. Interscience Publ, New York, London and Sydney, pp 613–628

    Google Scholar 

  • Haynes R H (1960) Physical basis of the dependence of blood viscosity on the tube radius. Am J Physiol 198: 1193–1200

    PubMed  CAS  Google Scholar 

  • Jeffery G B (1922) The motion of ellipsoid particles immersed in a viscous fluid. Proc R Soc, A102: 161–179

    Article  Google Scholar 

  • Kuroda K, Mishiro Y, Wada I (1958) Relation between the viscosity of erythrocyte suspension and the shape of the erythrocyte. Tokushima J Exp Med 4: 73–82

    Google Scholar 

  • Oldroyd J G (1953) The elastic and viscous properties of emulsions and suspensions. Proc R Soc A218: 122–132

    Article  CAS  Google Scholar 

  • Peric B (1964) Viscosity of blood at low shear rates. Israel J Exp Med 11: 139–149

    Google Scholar 

  • Rampling M W, Sirs J A (1972) The interactions of fibrinogen and dextrans with erythrocytes. J Physiol 223: 199–212

    PubMed  CAS  Google Scholar 

  • Rampling M W, Sirs J A (1976) A survey of the variation of erythrocyte flexibility within a healthy population. Biorheology 13: 101–105

    PubMed  CAS  Google Scholar 

  • Richardson E G (1950) Dynamics of Real Fluids. Arnold, London, 119

    Google Scholar 

  • Roscoe R (1952) The viscosity of suspensions of rigid spheres. Br J Appl Phys 3: 267–269

    Article  Google Scholar 

  • Rowlands S, Skibo L (1972) The morphology of red-cell aggregates. Thromb Res 1: 47–58

    Article  Google Scholar 

  • Schmidt-Nielsen K, Taylor C R (1968) Red blood cells; why or why not; Science 162: 274–275

    PubMed  CAS  Google Scholar 

  • Schmid-Schönbein H, Weiss H, Ludwig H (1973) A simple method for measuring red cell deformability in models of the microcirculation. Blut 26: 369–379

    Article  PubMed  Google Scholar 

  • Seaman G V F (1966) Factors affecting the flow properties of red cell suspensions. Biorheology 3: 169

    Google Scholar 

  • Sirs J A (1968) The measurement of the haematocrit and flexibility of erythrocytes with a centrifuge. Biorheology 5: 1–14

    PubMed  CAS  Google Scholar 

  • Sirs J A (1969) The respiratory efficiency and flexibility of erythrocytes stored in acid-citratedextrose solution. J Physiol 203: 93–109

    PubMed  CAS  Google Scholar 

  • Sirs J A (1970) Automatic recording of the rate of packing of erythrocytes in blood by a centrifuge. Phys Med Biol 15: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Sirs J A (1975) Erythrocyte flexibility, blood fibrinogen and surgery. In: Nicolaides A N (ed) Thromboembolism. Medical and Technical Publishing Co Ltd, Lancaster, England. 59–78

    Google Scholar 

  • Taylor G I (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc A138: 41–48

    Article  CAS  Google Scholar 

  • Taylor M H, Chien S, Gregerson M I, Lundberg J L (1965) Comparison of viscosity of suspensions of plastic spheres and human blood cells. Nature 207: 77–78

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Spring-Verlag Berling Heidelberg

About this paper

Cite this paper

Sirs, J.A. (1981). Erythrocyte Flexibility and Whole-blood Viscosity. In: Lowe, G.D.O., Barbenel, J.C., Forbes, C.D. (eds) Clinical Aspects of Blood Viscosity and Cell Deformability. Springer, London. https://doi.org/10.1007/978-1-4471-3105-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3105-2_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3107-6

  • Online ISBN: 978-1-4471-3105-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics