Biology of Mycobacterium tuberculosis and the Host-Pathogen Relationship

  • M. R. W. Ehlers


Mycobacterium tuberculosis is the single most successful pathogen in the world today, infecting one-third of the world’s population, and producing 8–10 million new cases of active tuberculosis and 3 million deaths annually. Moreover, this success is not a recent phenomenon, as tuberculosis afflicted the ancients and in all likelihood has been an unwelcome companion during much of modern man’s evolution. Indeed, in 1882 Robert Koch, pronouncing on its significance, declared that “all diseases, particularly the most dreaded infectious diseases such as bubonic plague, Asiatic cholera, etc., must rank far behind tuberculosis”1.


Mycobacterium Tuberculosis Protective Immunity Infected Macrophage Mycolic Acid katG Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ellner JJ, Hinman AR, Dooley SW, Fischl MA, Sepkowitz KA, Goldberger MJ, Shinnick TM, Iseman MD, Jacobs Jr. WR (1993) Tuberculosis symposium: emerging problems and promise. J Infect Dis 168: 537–551PubMedCrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control (1989) A strategic plan for the elimination of tuberculosis in the United States. MMWR 38 (suppl. S-3): 1–25Google Scholar
  3. 3.
    Bloom BR, Murray CJL (1992) Tuberculosis: commentary on a reemergent killer. Science 257:1055–1064PubMedCrossRefGoogle Scholar
  4. 4.
    Snider Jr. DE, Roper WL (1992) The new tuberculosis. N Engl J Med 326: 703–705PubMedCrossRefGoogle Scholar
  5. 5.
    Ehlers MRW (1993) The wolf at the door. Some thoughts on the biochemistry of the tubercle bacillus. S Afr Med J 82: 900–903Google Scholar
  6. 6.
    Goodfellow M, Wayne LG (1982) Taxonomy and nomenclature. In: Ratledge C, Stanford JL (eds.) The Biology of the Mycobacteria, vol 1. London: Academic Press, pp 471–521Google Scholar
  7. 7.
    McNeil MR, Brennan PJ (1991) Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res. Microbiol. 142: 451–463PubMedCrossRefGoogle Scholar
  8. 8.
    Young DB, Kaufmann SHE, Hermans PWM, Thole JER (1992) Mycobacterial protein antigens: a compilation. Mol Microbiol 6:133–145PubMedCrossRefGoogle Scholar
  9. 9.
    Barnes PF, Mehra V, Hirschfield GR, Fong S-J, Abou-Zeid C, Rook GAW, Hunter SW, Brennan PJ, Modlin RL (1989) Characterization of T cell antigens associated with the cell wall protein-peptidoglycan complex of Mycobacterium tuberculosis. J Immunol 143: 2656–2662PubMedGoogle Scholar
  10. 10.
    Orme IA, Miller ES, Roberts AD, Furney SK, Griffin JP, Dobos KM, Chi D, Rivoire B, Brennan PJ (1992) T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J Immunol 148:189–196PubMedGoogle Scholar
  11. 11.
    North RJ, Izzo AA (1993) Mycobacterial virulence. Virulent strains of Mycobacterium tuberculosis have faster in vivo doubling times and are better equipped to resist growth-inhibiting functions of macrophages in the presence and absence of specific immunity. J Exp Med 177:1723–1733PubMedCrossRefGoogle Scholar
  12. 12.
    Young DB, Cole ST (1993) Minireview. Leprosy, tuberculosis, and the New Genetics. J Bact 175:1–6PubMedGoogle Scholar
  13. 13.
    Nyka W (1974) Studies on the effect of starvation on mycobacteria. Infect Immun 9: 843–850PubMedGoogle Scholar
  14. 14.
    Falkow S, Isberg RR, Portnoy DA (1992) The interaction of bacteria with mammalian cells. Annu Rev Cell Biol 8: 333–363PubMedCrossRefGoogle Scholar
  15. 15.
    Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144: 2771–2780PubMedGoogle Scholar
  16. 16.
    Hynes RO (1992) Integrins: versatility, modulation, and signalling in cell adhesion. Cell 69:11–25PubMedCrossRefGoogle Scholar
  17. 17.
    Bliska JB, Galân JE, Falkow S (1993) Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73: 903–920PubMedCrossRefGoogle Scholar
  18. 18.
    Isberg RR, Van Nhieu GT (1994) Binding and internalization of microorganisms by integrin receptors. Trends Microbiol 2:10–14PubMedCrossRefGoogle Scholar
  19. 19.
    Ofek I, Rest RF, Sharon N (1992) Nonopsonic phagocytosis of microorganisms. Phagocytes use several molecular mechanisms to recognize, bind, and eventually kill microorganisms. ASM News 58: 429–435Google Scholar
  20. 20.
    Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454–1457PubMedCrossRefGoogle Scholar
  21. 21.
    Wright SD, Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158: 2016–2023PubMedCrossRefGoogle Scholar
  22. 22.
    Chan J, Xing Y, Magliozzo RS, Bloom BR (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175: 1111–1122PubMedCrossRefGoogle Scholar
  23. 23.
    Lehrer RI, Ganz T, Selsted ME (1991) Defensins: endogenous antibiotic peptides of animal cells. Cell 64: 229–230PubMedCrossRefGoogle Scholar
  24. 24.
    Auger MJ, Ross JA (1992) The biology of the macrophage. In: Lewis CE, McGee, J O’D (eds) The Macrophage. Oxford: IRL Press, pp 1–74Google Scholar
  25. 25.
    Rook GAW (1988) Role of activated macrophages in the immunopathology of tuberculosis. Br Med Bull 44: 611–623PubMedGoogle Scholar
  26. 26.
    Lowrie DB, Andrew PW (1988) Macrophage antimycobacterial mechanisms. Br Med Bull 44: 624–634PubMedGoogle Scholar
  27. 27.
    Armstrong JA, Hart P D’Arcy (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740PubMedCrossRefGoogle Scholar
  28. 28.
    Armstrong JA, Hart P D’Arcy (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. J Exp Med 142:1–16PubMedCrossRefGoogle Scholar
  29. 29.
    McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61: 2763–2773PubMedGoogle Scholar
  30. 30.
    De Chastellier C, Fréhel C, Offredo C, Skamene E. (1993) Implication of phagosome-lysosome fusion in restriction of Mycobacterium avium growth in bone marrow macrophages from genetically resistant mice. Infect Immun 61:3775–3784PubMedGoogle Scholar
  31. 31.
    Pancholi P, Mirza A, Bhardwaj N, Steinman RM (1993) Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 260: 984–986PubMedCrossRefGoogle Scholar
  32. 32.
    Myrvik QN, Leake ES, Wright MJ (1984) Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. Am Rev Respir Dis 129: 322–328PubMedGoogle Scholar
  33. 33.
    King CH, Mundayoor S, Crawford JT, Shinnick TM (1993) Expression of contact-dependent cytolytic activity by Mycobacterium tuberculosis and isolation of the genomic locus that encodes the activity. Infect Immun 61: 2708–2712PubMedGoogle Scholar
  34. 34.
    Friedman H, Bendinelli M (1988) Preface. In: Bendinelli M, Friedman H (eds) Mycobacterium tuberculosis. Interactions with the Immune System. New York: Plenum Press, pp xi–xiii.Google Scholar
  35. 35.
    Rook GAW, Steele J, Ainsworth M, Champion BR (1986) Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma-interferon on human monocytes and murine peritoneal macrophages. Immunology 59: 333–338PubMedGoogle Scholar
  36. 36.
    Collins FM (1990) In vivo vs. in vitro killing of virulent Mycobacterium tuberculosis. Res Microbiol 141: 212–217PubMedCrossRefGoogle Scholar
  37. 37.
    Mackaness GB (1968) The immunology of antituberculous immunity. Am Rev Resp Dis 97: 337–344PubMedGoogle Scholar
  38. 38.
    Lucas SB (1989) Mycobacteria and the tissues of man. In: Ratledge C, Stanford J, Grange JM (eds) The Biology of the Mycobacteria vol. 3. London: Academic Press, pp 107–176Google Scholar
  39. 39.
    De Libero G, Flesch I, Kaufmann SHE (1988) Mycobacteria- reactive Lyt-2+ T cell lines. Eur J Immunol 18: 59–66PubMedCrossRefGoogle Scholar
  40. 40.
    Ottenhoff THM, Ab BK, Van Embden JDA, Thole JER, Kiessling R (1988) The recombinant 65-kD heat shock protein of Mycobacterium bovis bacillus Calmette- Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med 168: 1947–1952PubMedCrossRefGoogle Scholar
  41. 41.
    Pithie AD, Rahelu M, Kumararatne DS, Drysdale P, Gaston JSH, lies PB, Innes JA, Ellis CJ (1992) Generation of cytolytic T cells in individuals infected by Mycobacterium tuberculosis and vaccinated with BCG. Thorax 47: 695–701PubMedCrossRefGoogle Scholar
  42. 42.
    Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR (1992) Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 89:12013–12017PubMedCrossRefGoogle Scholar
  43. 43.
    Kaufmann SHE (1993) Immunity to intracellular bacteria. Annu Rev Immunol 11:129–163PubMedCrossRefGoogle Scholar
  44. 44.
    Kaufmann SHE, De Libero G (1988) Cytolytic cells in M. tuberculosis infections. In: Bendinelli M, Friedman H (eds) Mycobacterium tuberculosis. Interactions with the Immune System. New York: Plenum Press, pp 151–170Google Scholar
  45. 45.
    Lowrie DB (1983) Mononuclear phagocyte-mycobacterium interaction. In: Ratledge C, Stanford J (eds) The Biology of the Mycobacteria vol. 2, London: Academic Press, pp 235–278Google Scholar
  46. 46.
    Daley CL, Small PM, Schecter GF, Schoolnik GK, McAdam RA, Jacobs Jr. WR, Hopewell PC (1992). An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus. N Engl J Med 326: 231–235PubMedCrossRefGoogle Scholar
  47. 47.
    Hannibal MC, Markovitz DM, Clark N, Nabel GJ (1993) Differential activation of human immunodeficiency virus type 1 and 2 transcription by specific T-cell activation signals. J Virol 67: 5035–5040PubMedGoogle Scholar
  48. 48.
    Stead WW (1992) Genetics and resistance to tuberculosis: could resistance be enhanced by genetic engineering? Ann Intern Med 116: 937–941PubMedGoogle Scholar
  49. 49.
    Buschman E, Skamene E (1988) Genetic background of the host and expression of natural resistance and acquired immunity to M. tuberculosis. In: Bendinelli M, Friedman H (eds) Mycobacterium tuberculosis. Interactions with the Immune System. New York: Plenum Press, pp 59–79Google Scholar
  50. 50.
    Schurr E, Morgan K, Gros P, Skamene E (1991) Genetics of leprosy. Am J Trop Med Hyg 44: 4–11PubMedGoogle Scholar
  51. 51.
    Buschman E, Schurr E, Gros P, Skamene E (1990) Role of major histocompatibility complex (MHC) and non-MHC genes in host resistance and susceptibility to mycobacteria. In: Ayoub EM, Cassell GH, Branche Jr. WC, Henry TJ (eds) American Society for Microbiology, Microbial Determinants of Virulence and Host Response. Washington, D.C: pp 93–111Google Scholar
  52. 52.
    Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73: 469–485PubMedCrossRefGoogle Scholar
  53. 53.
    Fine PEM, Rodrigues LC (1990) Modern vaccines. Mycobacterial diseases. Lancet 335:1016–1020PubMedCrossRefGoogle Scholar
  54. 54.
    Smith DW, Wiegeshaus EH, Edwards ML (1988) The protective effects of BCG vaccination against tuberculosis. In: Bendinelli M, Friedman H, (eds) Mycobacterium tuberculosis. Interaction with the Immune System. New York: Plenum Press, pp 341–370Google Scholar
  55. 55.
    Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs Jr. WR, Bloom BR (1991) New use of BCG for recombinant vaccines. Nature 351: 456–460PubMedCrossRefGoogle Scholar
  56. 56.
    Colston MJ (1990) Protective immunity against mycobacterial infections: investigating cloned antigens. In: McFadden J (ed) Molecular Biology of the Mycobacteria. London: Surrey University Press, pp 69–76Google Scholar
  57. 57.
    Aldovini A, Young RA (1991) Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature 351:479–482PubMedCrossRefGoogle Scholar
  58. 58.
    Young D, Garbe T, Lathigra R, Abou-Zeid C (1990) Protein antigens: structure, function and regulation. In: McFadden J (ed) Molecular Biology of the Mycobacteria. London: Surrey University Press, pp 1–35Google Scholar
  59. 59.
    Kaufmann SHE, Vath U, Thole JER, van Embden JDA, Emmrich F (1987) Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur J Immunol 17:351–357PubMedCrossRefGoogle Scholar
  60. 60.
    Shield MJ (1983) The importance of immunologically effective contact with environmental mycobateria. In: Ratledge C, Stanford J (eds) The Biology of the Mycobacteria, vol. 2. London: Academic Press, pp 343–415Google Scholar
  61. 61.
    Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76: 241–251PubMedCrossRefGoogle Scholar
  62. 62.
    Ehlers S, Mielke MEA, Hahn H (1994) Progress in TB research: Robert Koch’s dilemma revisited. Immunol. Today 15, 1–4Google Scholar
  63. 63.
    Lanzavecchia A (1993) Identifying strategies for immune intervention. Science 260: 937–944PubMedCrossRefGoogle Scholar
  64. 64.
    Bloom BR (1992) Tuberculosis. Back to a frightening future. Nature 358: 538–539PubMedCrossRefGoogle Scholar
  65. 65.
    Mitchison DA (1984) Drug resistance in mycobacteria. Br Med Bull 40: 84–90PubMedGoogle Scholar
  66. 66.
    Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341: 647–650PubMedCrossRefGoogle Scholar
  67. 67.
    Nair J, Rouse DA, Bai G-H, Morris SL (1993) The rpsL gene and streptomycin resistance in single and multiple drug- resistant strains of Mycobacterium tuberculosis. Mol Microbiol 10: 521–527PubMedCrossRefGoogle Scholar
  68. 68.
    Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs Jr. WR (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591–593PubMedCrossRefGoogle Scholar
  70. 70.
    Jacobs Jr. WR, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260: 819–822PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1995

Authors and Affiliations

  • M. R. W. Ehlers

There are no affiliations available

Personalised recommendations