Skip to main content

Music Interaction: Understanding Music and Human-Computer Interaction

  • Chapter
  • First Online:
Music and Human-Computer Interaction

Abstract

We introduce, review and analyse recent research in Music and Human-Computer Interaction (HCI), also known as Music Interaction. After a general overview of the discipline, we analyse the themes and issues raised by the other 15 chapters of this book, each of which presents recent research in this field. The bulk of this chapter is organised as an FAQ. Topics include: the scope of research in Music Interaction; the role of HCI in Music Interaction; and conversely, the role of Music Interaction in HCI. High-level themes include embodied cognition, spatial cognition, evolutionary interaction, gesture, formal language, affective interaction, and methodologies from social science. Musical activities covered include performance, composition, analysis, collaborative music making, and human and machine improvisation. Specific issues include: whether Music Interaction should be easy; what can be learned from the experience of being “in the groove”, and what can be learned from the commitment of musical amateurs. Broader issues include: what Music Interaction can offer traditional instruments and musical activities; what relevance it has for domains unconnected with music; and ways in which Music Interaction can enable entirely new musical activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M. L. (2003). Embodied cognition: A field guide, artificial intelligence, 149(1), 91–130, ISSN 0004-3702.

    Google Scholar 

  • Angelis, V., Holland, S., Clayton, M., & Upton, P. J. (2013). Journal of New Music Research, 42, 1.

    Google Scholar 

  • Aristotle (350 BCE). The Poetics (trans: Butcher, S.H.). Cambridge, MA: MIT Classics Archive. http://classics.mit.edu/Aristotle/poetics.html. Accessed 21 Jan 2013.

  • Baily, J. (1985). Music structure and human movement. In P. Howell, I. Cross, & R. West (Eds.), Musical structure and cognition. London: Academic.

    Google Scholar 

  • Ball, P. (2010). The music instinct: How music works and why we can’t do without it. London: Bodley Head.

    Google Scholar 

  • Bau, O., Tanaka, A., & Mackay, W. E. (2008). The A20: Musical metaphors for interface design. In Proceedings of NIME 2008 (pp. 91–96). http://www.nime.org/archive/, http://www.nime.org/proceedings/2008/nime2008_091.pdf. Accessed 21 Jan 2013.

  • Bearman, N., & Brown, E. (2012). Who’s sonifying data and how are they doing it? A comparison of ICAD and other venues since 2009. In Proceedings of the 18th international conference on auditory display (pp. 231–232). Atlanta: Georgia Institute of Technology.

    Google Scholar 

  • Beckwith, S. (1992). Hunting musical knowledge in darkest medialand. In A. Edwards & S. Holland (Eds.), Multimedia interface design in education. Hiedelberg: Springer.

    Google Scholar 

  • Biles (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceedings of the 1994 international computer music conference. San Francisco: ICMA (The International Computer Music Association).

    Google Scholar 

  • Bird, J., Holland, S., Marshall, P., Rogers, Y., & Clark, A. (2008). Feel the force: Using tactile technologies to investigate the extended mind. In Proceedings of Devices that Alter Perception workshop (DAP 08), as part of Ubicomp 2008, Seoul, Korea (pp. 1–4).

    Google Scholar 

  • Blacking, J. (Ed.). (1977). The anthropology of the body. London: Academic.

    Google Scholar 

  • Blackwell, A. F., Britton, C., Cox, A., Green, T. R. G., Gurr, C., Kadoda, G., Kutar, M. S., Loomes, M., Nehaniv, C. L., Petre, M., Roast, C., Roe, C., Wong, A., & Young, R. M. (2001). Cognitive dimensions of notations: Design tools for cognitive technology. Cognitive technology: Instruments of mind (pp. 325–341). Berlin/New York: Springer

    Google Scholar 

  • Blythe, M., Overbeeke, K., Monk, A., & Wright, P. (2003). Funology: From usability to enjoyment. New York: Springer.

    Google Scholar 

  • Borchers, J. (1999, August 22–26). Designing interactive music systems: A pattern approach. In Proceeding of Human-Computer Interaction: Ergonomics and User Interfaces, Proceedings of HCI International ’99 (the 8th International Conference on Human-Computer Interaction), Munich, Germany (Vol. 1).

    Google Scholar 

  • Bouwer, A., Holland, S., & Dalgleish, M. (2013a). The haptic bracelets: Learning multi-limb rhythm skills from haptic stimuli while reading. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 101–122). London: Springer.

    Google Scholar 

  • Bouwer, A., Holland, S., & Dalgleish, M. (2013b). Song Walker harmony space: Embodied interaction design for complex musical skills. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 207–222). London: Springer.

    Google Scholar 

  • Bramwell-Dicks, A., Petrie, H., Edwards, A. D. N., & Power, C. (2013). Affective musical interaction: Influencing users’ behaviour and experiences with music. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 67–84). London: Springer.

    Google Scholar 

  • Brewster, S. A., Wright, P. C., & Edwards, A. D. N. (1993). An evaluation of earcons for use in auditory human-computer interfaces. In Proceedings of the INTERACT ’93 and CHI ’93 conference on human factors in computing systems (CHI ’93) (pp. 222–227). New York: ACM.

    Google Scholar 

  • Brown, M. (2002). Conductive education and the use of rhythmical intention for people with Parkinson’s disease. In I. Kozma & E. Balogh (Eds.), Conductive education occasional papers (Vol. 8, pp. 75–80). Budapest: International Peto Institute.

    Google Scholar 

  • Bryan-Kinns, N., & Hamilton, F. (2009). Identifying mutual engagement. Behaviour & Information Technology, 31(2), 101–125, 201 pp.

    Google Scholar 

  • Buxton, W. (2008). My vision isn’t my vision: Making a career out of getting back to where I started. In T. Erickson & D. McDonald (Eds.), HCI remixed: Reflections on works that have influenced the HCI community (pp. 7–12). Cambridge, MA: MIT Press.

    Google Scholar 

  • Buxton, W., Sniderman, R., Reeves, W., Patel, S., & Baecker, R. (1979). The evolution of the SSSP score editing tools. Computer Music Journal, 3(4), 14–25+60.

    Google Scholar 

  • Clarke, E. F. (1993). Generativity, mimesis and the human body in music performance. Contemporary Music Review, 9, 1–2.

    Article  Google Scholar 

  • Collins, N. (2008). The analysis of generative music programs. Organised Sound, 13(3), 237–248.

    Article  Google Scholar 

  • Coughlan, T., & Johnson, P. (2006). Interaction in creative tasks: Ideation, representation and evaluation in composition. In R. Grinter, T. Rodden, P. Aoki, Ed Cutrell, R. Jeffries, and G. Olson (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’06) (pp. 531–540). New York: ACM.

    Google Scholar 

  • Cross, I. (2001). Music, mind and evolution. Psychology of Music, 29(1), 95–102.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. New York: Harper Collins.

    Google Scholar 

  • Desain, P., & Honing, H. (1996). Modeling continuous aspects of music performance: Vibrato and Portamento. In B. Pennycook & E. Costa-Giomi (Eds.), Proceedings of the international music perception and cognition conference, Montreal: McGill University.

    Google Scholar 

  • Dissanayake, E. (2001). An ethological view of music and its relevance to music therapy. Nordic Journal of Music Therapy, 10(2), 159–175.

    Article  Google Scholar 

  • Doffman, M. (2009). Making it groove! Entrainment, participation and discrepancy in the ‘conversation’ of a Jazz Trio. Language & History, 52(1), 130–147.

    Article  Google Scholar 

  • Dourish, P. (2001). Where the action is: The foundations of embodied interaction. Cambridge: MIT Press.

    Google Scholar 

  • Engelbart, D., & English, W. (1968). A research centre for augmenting human intellect. In Proceedings of the fall joint computer conference (pp. 395–410). San Francisco. http://sloan.stanford.edu/mousesite/Archive/ResearchCenter1968/ResearchCenter1968.html. Accessed 21 Jan 2013.

  • Fauconnier, G., & Turner, M. (2002). How we think: Conceptual blending and the mind’s hidden complexities. New York: Basic Books.

    Google Scholar 

  • Fencott, R., & Bryan-Kinns, N. (2013). Computer musicking: HCI, CSCW and collaborative digital musical interaction. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 189–206). London: Springer.

    Google Scholar 

  • Gaver, W. W., Beaver, J., & Benford, S. (2003). Ambiguity as a resource for design. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’03) (pp. 233–240). New York: ACM Press.

    Google Scholar 

  • Gentner, D., & Nielsen, J. (1996). The Anti-Mac interface. Communications of the ACM, 39(8), 70–82.

    Article  Google Scholar 

  • Gifford, T. (2013). Appropriate and complementary rhythmic improvisation in an interactive music system. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 271–286). London: Springer.

    Google Scholar 

  • Glaser, B. G., & Strauss, A. L. (1967). Discovery of grounded theory: Strategies for qualitative research. Chicago: AldineTransaction.

    Google Scholar 

  • Goebl, W., Bresin, R., & Galembo, A. (2004). Once again: The perception of piano touch and tone. Can touch audibly change piano sound independently of intensity? In Proceedings of the International Symposium on Musical Acoustics. Nara, Japan.

    Google Scholar 

  • Graham, P. (2011) Rarely asked questions. http://paulgraham.com/raq.html. Accessed 8 Oct 2011.

  • Harrison, S., Tatar, D., & Sengers, P. (2007). The three paradigms of HCI. In Proceedings of Alt. Chi. session at the SIGCHI conference on human factors in computing systems. San Jose, California, USA.

    Google Scholar 

  • Hassenzahl, M., & Tractinsky, N. (2006). User experience—a research agenda. Behavior & Information Technology, 25(2), 91–97.

    Article  Google Scholar 

  • Heath, C., Hindmarsh, J., & Luff, P. (2010). Video in qualitative research. London: Sage.

    Google Scholar 

  • Hill, P., Holland, S., & Laney, R. (2007). An introduction to aspect-oriented music representation. Computer Music Journal, 31(4), 45–56.

    Article  Google Scholar 

  • Holland, S. (1989). Artificial intelligence, education and music: The use of artificial intelligence to encourage and facilitate music composition by novices. PhD thesis, IET, Open University, UK, pp. 28–62.

    Google Scholar 

  • Holland, S., & Elsom-Cook, M. (1990). Architecture of a knowledge-based tutor. In M. Elsom-Cook (Ed.), Guided discovery tutoring. London: Paul Chapman Publishing Ltd.

    Google Scholar 

  • Holland, S. (1992). Interface design for empowerment: A case study from music. In S. Holland & A. Edwards (Eds.), Multimedia interface design in education. Hiedelberg: Springer.

    Google Scholar 

  • Holland, S. (2000). Artificial intelligence in music education: A critical review. In E. Miranda (Ed.), Readings in music and artificial intelligence, contemporary music studies (Vol. 20, pp. 239–274). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Holland, S., Marshall, P., Bird, J., Dalton, S. N., Morris, R., Pantidi, N., Rogers, Y., & Clark, A. (2009). Running up Blueberry Hill: Prototyping whole body interaction in harmony space. In Proceedings of the third conference on tangible and embodied interaction (pp. 92–98). New York: ACM.

    Google Scholar 

  • Holland, S., Bouwer, A., Dalgleish, M., & Hurtig, T. (2010). Feeling the beat where it counts: Fostering multi-limb rhythm skills with the Haptic Drum Kit. In Proceedings of the TEI 2010, Boston, Cambridge, MA.

    Google Scholar 

  • Holland, S., Wilkie, K., Bouwer, A., Dalgleish, M., & Mulholland, P. (2011). Whole body interaction in abstract domains. In D. England (Ed.), Whole body interaction. London: Springer.

    Google Scholar 

  • Hornecker, E. (2011). The role of physicality in tangible and embodied interactions. Interactions, 18(2), 19–23.

    Article  Google Scholar 

  • Hsu, W., & Sosnick, M. (2009). Evaluating interactive music systems: An HCI approach. In Proceedings of New Interfaces for Musical Expression (NIME) 2009. New York: NIME.

    Google Scholar 

  • Huang, K., Starner, T., Do, E., Weiberg, G., Kohlsdorf, D., Ahlrichs, C., & Leibrandt, R. (2010). Mobile music touch: Mobile tactile stimulation for passive learning. In Proceedings of the 28th international conference on human factors in computing systems (CHI10) (pp. 791–800). New York: ACM.

    Google Scholar 

  • Hughes, T. S. (2003). Groove and flow: Six analytical essays on the music of Stevie Wonder. PhD thesis, University of Washington, Seattle.

    Google Scholar 

  • Hurtienne, J., & Blessing, L. (2007). Design for intuitive use – testing image schema theory for user interface design. In Proceedings of the 16th international conference on engineering design, Paris, France (pp. 1–12).

    Google Scholar 

  • Johnson, M. (2005). The philosophical significance of image schemas. In B. Hampe & J. Grady (Eds.), From perception to meaning: Image schemas in cognitive linguistics (pp. 15–33). Berlin/New York: Mouton de Gruyter.

    Chapter  Google Scholar 

  • Jordà, S. (2005). Digital Lutherie. Universitat Pompeu Fabra. PhD Thesis.

    Google Scholar 

  • Jordà, S., Kaltenbrunner, M., Geiger, G., & Alonso, M. (2006). The reacTable: A tangible tabletop musical instrument and collaborative workbench. In ACM SIGGRAPH 2006 Sketches (SIGGRAPH ‘06). New York: ACM.

    Google Scholar 

  • Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The Journal of the Learning Sciences, 4(1), 39–103.

    Article  Google Scholar 

  • Juntunen, M. L. (2004). Embodiment in Dalcroze Eurhythmics. PhD thesis, University of Oulu, Finland.

    Google Scholar 

  • Kiefer, C., Collins, N., Fitzpatrick, G. (2008). HCI methodology for evaluating musical controllers. A case study. In Proceedings of the international conference on New Interfaces for Musical Expression (NIME’08) (pp. 87–90). University of Sussex.

    Google Scholar 

  • Kirke, A., & Miranda, E. (2009). A survey of computer systems for expressive music performance. ACM Surveys, 42(1), 1–41.

    Article  Google Scholar 

  • Kirke, A., & Miranda, E. (2013). Pulsed melodic processing – The use of melodies in affective computations for increased processing transparency. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 171–188). London: Springer.

    Google Scholar 

  • Klemmer, S. R., Hartmann, B., & Takayama, L. (2006). How bodies matter: Five themes for interaction design. In Proceedings of the 6th conference on Designing Interactive Systems (DIS ’06) (pp. 140–149). New York: ACM.

    Google Scholar 

  • Kressig, R. W., Allali, G., & Beauchet, O. (2005). Long-term practice of Jaques-Dalcroze eurhythmics prevents age-related increase of gait variability under a dual task. Letter to Journal of the American Geriatrics Society, 53(4), 728–729.

    Article  Google Scholar 

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from. New York: Basic Books.

    MATH  Google Scholar 

  • Lanier, J. (1989). Personal communication with Simon Holland and other attendees at 1989. Nato advanced reasearch workshop on multimedia interface design in education, Lucca, Italy.

    Google Scholar 

  • Large, E. W. (2008). Resonating to musical rhythm: Theory and experiment. In S. Grondin (Ed.), The psychology of time (pp. 189–231). Bingley: Emerald.

    Google Scholar 

  • Lazar, J., Feng, J. H., & Hochheiser, H. (2009). Research methods in human-computer interaction. Chichester: Wiley.

    Google Scholar 

  • Leman, M. (2007). Embodied music cognition and mediation technology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge: MIT Press.

    Google Scholar 

  • Linson, A. (2011). Unnecessary constraints: A challenge to some assumptions of digital musical instrument design. In International computer music conference 2011. Huddersfield: University of Huddersfield.

    Google Scholar 

  • MacCallum, R. M., Mauch, M., Burt, A., Leroi, A. M. (2012). Evolution of music by public choice. In R. E. Lenski (Ed.), Proceedings of the National Academy of Sciences of the United States of America, 109(30), 12081–12086. doi:10.1073/pnas.1203182109.

    Google Scholar 

  • Malone, T. (1984). Heuristics for designing enjoyable user interfaces: Lessons from computer games. In J. C. Thomas & M. L. Schneider (Eds.), Human factors in computer systems. Norwood: Ablex.

    Google Scholar 

  • Maslow, A. (1970). Motivation and personality. New York: Harper and Rowe.

    Google Scholar 

  • McDermott, J., Griffith, N. J. L., & O’Neill, M. (2007). Evolutionary GUIs for sound synthesis. In M. Giacobini (Ed.), Applications of evolutionary computing (Vol. 4448, pp. 547–556). Heidelberg: Springer.

    Google Scholar 

  • McDermott, J., Gifford, T., Bouwer, A., & Wagy, M. (2013a). Should music interaction be easy? In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 29–48). London: Springer.

    Google Scholar 

  • McDermott, J., Sherry, D., & O’Reilly, U. (2013b). Evolutionary and generative music informs music HCI—and vice versa. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 223–240). London: Springer.

    Google Scholar 

  • McPherson, A. P., & Kim, Y. E. (2013). Piano technique as a case study in expressive gestural interaction. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 123–138). London: Springer.

    Google Scholar 

  • Meyer, L. (1956). Emotion and meaning in music. Chicago: Chicago University Press.

    Google Scholar 

  • Mills, R. (2010). Dislocated sound: A survey of improvisation in networked audio platforms. In Proceedings of the NIME 2010. http://www.nime.org/proceedings/2010/nime2010_186.pdf. Accessed 14 Jan 2012.

  • Milne, A. J., Xambó, A., Laney, R., Sharp, D. B., Prechtl, A., & Holland, S. (2011, May 30–June 1). Hex Player—A virtual musical controller. In The International Conference on New Interfaces for Musical Expression 2011 (NIME ’11) (pp. 244–247). Oslo, Norway.

    Google Scholar 

  • Milne, A. J., Carlé, M., Sethares, W. A., Noll, T., & Holland, S. (2011b). Scratching the scale Labyrinth. In C. Agon, M. Andreatta, G. Assayag, E. Amiot, J. Bresson, & J. Mandereau (Eds.), Proceedings of mathematics and computation in music. LNCS Vol 6726 ISBN 978-3-642-21589-6, 180–195

    Google Scholar 

  • Narmour, E. (1990). The analysis and cognition of basic musical structures. Chicago: University of Chicago Press.

    Google Scholar 

  • O’Modhrain, S. (2011). A framework for the evaluation of digital musical instruments. Computer Music Journal, 35(1), 28–42.

    Article  Google Scholar 

  • O’Hara, K. P., & Payne, S. J. (1998). The effects of operator implementation cost on planfulness of problem solving and learning. Cognitive Psychology, 35(1), 34–70.

    Article  MathSciNet  Google Scholar 

  • Patten, J., Recht, B., & Ishii, H. (2002). Audiopad: A tag-based interface for musical performance. In Proceedings of the 2002 conference on New interfaces for musical expression (NIME02). University of Singapore (pp. 1–6).

    Google Scholar 

  • Poupyrev, I., Lyons, M. J., Fels, S., & Blaine, T. (Bean). (2001). New interfaces for musical expression. In CHI ’01 extended abstracts on human factors in computing systems (CHI EA ’01) (pp. 491–492). New York: ACM.

    Google Scholar 

  • Prechtl, A., Milne, A., Holland, S., Laney, R., & Sharp, D. (2012, Spring) A MIDI sequencer that widens access to the compositional possibilities of novel tunings. Computer Music Journal, 16(1), 42–54.

    Google Scholar 

  • Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994). Cooperative design. In Human-computer interaction (pp. 375–379). England: Addison-Wesley.

    Google Scholar 

  • Reiss, S. (2004). Multifaceted nature of intrinsic motivation: The theory of 16 basic desires. Review of General Psychology, 8(3), 179–193.

    Article  Google Scholar 

  • Rohrer, T. (2005). Image schemata in the brain. In B. Hampe & J. Grady (Eds.), From perception to meaning: Image schemata in cognitive linguistics. Berlin: Walter de Gruyter.

    Google Scholar 

  • Rohrer, T. (2007). The body in space: Dimensions of embodiment. In T. Ziemke, J. Zlatev, R. Frank, & R. Dirven (Eds.), Body, language, and mind: Embodiment (pp. 339–378). Berlin: Walter de Gruyter.

    Google Scholar 

  • Rowe, R. (1993). Interactive music systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ryan, R., & Deci, E. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78.

    Article  Google Scholar 

  • Sawyer, R. K., & DeZutter, S. (2009). Distributed creativity: How collective creations emerge from collaboration. Psychology of Aesthetics, Creativity, and the Arts, 3(2), 81–92.

    Article  Google Scholar 

  • Seago, A. (2013). A new interaction strategy for musical timbre design. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 153–170). London: Springer.

    Google Scholar 

  • Seago, A., Holland, S., & Mulholland, P. (2004). A critical analysis of synthesizer user interfaces for timbre, people and computers – XVIII proceedings of human computer interaction 2004 Sept 2004 (pp. 105–106). London: Springer.

    Google Scholar 

  • Seago, A., Holland, S., & Mulholland, P. (2010). A novel user interface for musical timbre design. Audio Engineering Society AES, In Proceedings of 128th convention (pp. 22–25). London.

    Google Scholar 

  • Sengers, P. (2006). Must design become scientific? Paper presented at workshop on exploring design as a research activity, as part of Sixth Conference on Designing Interactive Systems. (DIS‘06), University Park, PA.

    Google Scholar 

  • Small, C. (1998). Musicking: The meanings of performing and listening. Hanover: Wesleyan University Press.

    Google Scholar 

  • Stoffregen, T. A., Bardy, B. G., & Mantel, B. (2006). Affordances in the design of enactive systems. Virtual Reality, 10(1), 4–10.

    Article  Google Scholar 

  • Stowell, D., & McLean, A. (2013). Live music-making: A rich open task requires a rich open interface. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 139–152). London: Springer. http://www.nime.org/archive/, http://www.nime.org/proceedings/2008/nime2008_081.pdf. Accessed 21 Jan 2013.

    Google Scholar 

  • Stowell, D., Plumbley, M. D., & Bryan-Kinns, N. (2008). Discourse analysis evaluation method for expressive musical interfaces. In Proceedings of the NIME’08 (pp. 81–8). http://www.nime.org/archive/, http://www.nime.org/proceedings/2008/nime2008_081.pdf. Accessed 21 Jan 2013.

  • Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication system. PhD thesis, Massachusetts Institute of Technology (Published in 2003 as Technical Report No. 574). Cambridge: University of Cambridge. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf. Accessed 5 Jan 2013.

  • Suzuki, H. (2007). Spectrum analysis and tone quality evaluation of piano sounds with hard and soft touches. Acoustical Science and Technology, 28(1), 1–6.

    Article  Google Scholar 

  • Svansdottir, H. B., & Snaedal, J. (2006). Music therapy in moderate and severe dementia of Alzheimer’s type: A case–control study. International Psychogeriatrics, 18(4), 613–621.

    Article  Google Scholar 

  • Swift, B. (2013). Chasing a feeling: Experience in computer supported jamming. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 85–100). London: Springer.

    Google Scholar 

  • Takagi, H. (2001). Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE, 89(9), 1275–1296.

    Article  Google Scholar 

  • Temperley, D. (2001). The cognition of basic musical structures. Cambridge, MA: MIT Press.

    Google Scholar 

  • Thaut, M. H. (2005). Rhythm music and the brain: Scientific foundations and clinical applications. New York: Routledge.

    Google Scholar 

  • Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. The Review of Higher Education, 45(1), 89–125.

    Google Scholar 

  • Todd, N. (1989). A computational model of rubato. Contemporary Music Review, 3, 1.

    Article  MathSciNet  Google Scholar 

  • Waiswisz, M. (1985). The hands, a set of remote MIDI-controllers. In Proceedings of the 1985 international computer music conference (pp. 313–318). San Francisco: International Computer Music Association.

    Google Scholar 

  • Wallin, N. L., Merker, B., & Brown, S. (Eds.). (2000). The origins of music. Cambridge: MIT Press.

    Google Scholar 

  • Wallis, I., Ingalls, T., Campana, E., & Vuong, C. (2013). Amateur musicians, long-term engagement, and HCI. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 49–66). London: Springer.

    Google Scholar 

  • Wanderley, M. M., & Orio, N. (2002). Evaluation of input devices for musical expression: Borrowing tools from HCI. Computer Music Journal, 26(3), 62–76.

    Article  Google Scholar 

  • Wessel, D. L., & Wright, M. (2002). Problems and prospects for intimate musical control of computers. Computer Music Journal, 26(3), 11–22.

    Article  Google Scholar 

  • Wilkie, K., Holland, S., & Mulholland, P. (2010). What can the language of musicians tell us about music interaction design? Computer Music Journal, 34(4), 34–48.

    Article  Google Scholar 

  • Wilkie, K., Holland, S., & Mulholland, P. (2013). Towards a participatory approach for interaction design based on conceptual metaphor theory: A case study from music interaction. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 259–270). London: Springer.

    Google Scholar 

  • Wilson, W. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625–636.

    Article  Google Scholar 

  • Xambó, A., Laney, R., Dobbyn, C., & Jordà, S. (2013). Video analysis for evaluating music interaction: Musical tabletops. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human computer interaction (pp. 241–258). London: Springer.

    Google Scholar 

  • Zbikowski, L. M. (1997a). Conceptual models and cross-domain mapping: New perspective on 446 theories of music and hierarchy. Journal of Music Theory, 41(2), 193–225.

    Article  Google Scholar 

  • Zbikowski, L. M. (1997b). Des Herzraums Abschied: Mark Johnson’s theory of embodied 448 knowledge and music theory. Theory and Practice, 22–23, 1–16.

    Google Scholar 

  • Zimmerman, T. G., Lanier, J., Blanchard, C., Bryson, S., & Harvill, Y. (1986). A hand gesture interface device. In J. M. Carroll & P. P. Tanner (Eds.), Proceedings of the SIGCH conference on human factors in computing systems (CHI ’87) (pp. 189–192). New York: ACM.

    Google Scholar 

Download references

Acknowledgements

Thanks to Rose Johnson, Grégory Leplâtre, co-organisers of the 2011 BCS HCI International Workshop on Music and Human-Computer Interaction and to all workshop participants. Thanks to Paul Marshall, Andy Milne and Martin Clayton for reading parts of this chapter. Thanks to Helen Desmond and Ben Bishop of Springer for patient support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Holland, S., Wilkie, K., Mulholland, P., Seago, A. (2013). Music Interaction: Understanding Music and Human-Computer Interaction. In: Holland, S., Wilkie, K., Mulholland, P., Seago, A. (eds) Music and Human-Computer Interaction. Springer Series on Cultural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2990-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2990-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2989-9

  • Online ISBN: 978-1-4471-2990-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics