Skip to main content

The Use of Biophysical Technologies in Chronic Wound Management

Abstract

Wound healing is a complex biological response of cells and tissues. In this chapter we will focus on physical therapies used to support the debridement, local perfusion, bacterial growth control, granulation and epithelialization of wounds, in particular of chronic wounds like leg ulcers or pressure ulcers, and the diabetic foot syndrome. Therapeutic ultrasound does not only improve debridement but microcirculation and granulation. More recently, shock waves have been used in topical wound therapy as well. Topical negative pressure has been investigated in acute and chronic full-thickness wounds. The method can also be used to ensure skin transplant take. Infrared light has been used to control colonization of chronic wounds among other effects. The role of light an lasers is increasing, with low-level laser treatment more commonly used in practice. Among the electrotherapies both inductively and conductively coupled methods will be discussed. Biological effects can be generated using either direct current, alternating current or pulsed current. Although physical therapies have a longer tradition in wound treatment, the level of evidence often is low and larger placebo controlled or comparative trials are the exception. Our current understanding of the role of physical therapy in wound management is the adjuvant use of such techniques in individualized treatment protocols.

Keywords

  • Wounds
  • Leg ulcer
  • Pressure ulcers
  • Diabetic foot syndrome Therapeutic ultrasound
  • Topical negative pressure
  • Laser
  • Light-emitting devices
  • Infrared
  • Shock waves
  • Electrotherapy
  • Current

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-2987-5_16
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-2987-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5
Fig. 16.6
Fig. 16.7
Fig. 16.8
Fig. 16.9
Fig. 16.10
Fig. 16.11
Fig. 16.12
Fig. 16.13

References

  1. Ahearn C. Intermittent negative pressure wound therapy and lower negative pressures – ­exploring the disparity between science and current practice: a review of the literature. Ostomy Wound Manage. 2009;55:22–8.

    PubMed  Google Scholar 

  2. Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci. 2002;1:547–52.

    PubMed  CAS  Google Scholar 

  3. Alvarez OM, Rogers RS, Booker JG, Patel M. Effect of noncontact normothermic wound therapy on the healing of neuropathic (diabetic) foot ulcers: an interim analysis of 20 patients. J Foot Ankle Surg. 2003;42:30–5.

    PubMed  Google Scholar 

  4. Alvarez O, Patel M, Rogers R, Booker J. Effect of non-contact normothermic wound therapy on the healing of diabetic neuropathic foot ulcers. J Tissue Viability. 2006;16:8–11.

    PubMed  Google Scholar 

  5. American Physical Therapy Association. Electrotherapeutic terminology in physical therapy. Alexandria (VA): APTA; 2001.

    Google Scholar 

  6. Apelqvist J, Armstrong DG, Lavery LA, Boulton AJ. Resource utilization and economic costs of care based on a randomized trial of vacuum-assisted closure therapy in the treatment of diabetic foot wounds. Am J Surg. 2008;195:782–8.

    PubMed  Google Scholar 

  7. Apostoli A, Caula C. Pain and basic functional activities in a group of patients with cutaneous wounds under V.A.C therapy in hospital setting [Italian]. Prof Inferm. 2008;61:158–64.

    PubMed  Google Scholar 

  8. Armstrong DG, Lavery LA, Diabetic Foot Study Consortium. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet. 2005;366:1704–10.

    PubMed  Google Scholar 

  9. Augustin M, Herberger K. Benefits and limitations of vacuum therapy in wounds [German]. Hautarzt. 2007;58:945–51.

    PubMed  CAS  Google Scholar 

  10. Baba-Akbari Sari A, Flemming K, Cullum NA, Wollina U. Therapeutic ultrasound for pressure ulcers. Cochrane Database Syst Rev. 2006;3:CD001275.

    PubMed  Google Scholar 

  11. Baharestani MM. Use of negative pressure wound therapy in the treatment of neonatal and pediatric wounds: a retrospective examination of clinical outcomes. Ostomy Wound Manage. 2007;53:75–85.

    PubMed  Google Scholar 

  12. Baharestani M, Amjad I, Bookout K, Fleck T, Gabriel A, Kaufman D, McCord SS, Moores DC, Olutoye OO, Salazar JD, Song DH, Teich S, Gupta S. V.A.C. therapy in the management of paediatric wounds: clinical review and experience. Int Wound J. 2009;6 Suppl 1:1–26.

    Google Scholar 

  13. Bell AL, Cavorsi J. Noncontact ultrasound therapy for adjunctive treatment of nonhealing wounds: retrospective analysis. Phys Ther. 2008;88:1517–24.

    PubMed  Google Scholar 

  14. Beral D, Adair R, Peckham-Cooper A, Tolan D, Botterill I. Chronic wound sepsis due to retained vacuum assisted closure foam. BMJ. 2009;338:b2269. doi:10.1136/bmj.b2269.

    PubMed  Google Scholar 

  15. Boulton AJ. The diabetic foot: a global view. Diabetes Metab Res Rev. 2000;16 Suppl 1:S2–5.

    PubMed  Google Scholar 

  16. Breuing KH, Bayer L, Neuwalder K, Orgill DP. Early experience using low frequency ultrasound in chronic wounds. Ann Plast Surg. 2005;55:183–7.

    PubMed  CAS  Google Scholar 

  17. Bullock AJ, Barker AT, Coulton L, Macneil S. The effect of induced biphasic pulsed currents on re-epithelialization of a novel wound healing model. Bioelectromagnetics. 2007;28:31–41.

    PubMed  Google Scholar 

  18. Byrnes KR, Barna L, Chenault VM, Waynant RW, Ilev IK, Longo L, Miracco C, Johnson B, Anders JJ. Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes. Photomed Laser Surg. 2004;22:281–90.

    PubMed  Google Scholar 

  19. Callaghan MJ, Chang EI, Seiser N, Aarabi S, Ghali S, Kinnucan ER, Simon BJ, Gurtner GC. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg. 2008;121:130–41.

    PubMed  CAS  Google Scholar 

  20. Campbell PE, Smith GS, Smith JM. Retrospective clinical evaluation of gauze-based negative pressure wound therapy. Int Wound J. 2008;5:280–6.

    PubMed  Google Scholar 

  21. Cañedo-Dorantes L, García-Cantú R, Barrera R, Méndez-Ramírez I, Navarro VH, Serrano G. Healing of chronic arterial and venous leg ulcers through systemic effects of electromagnetic fields. Arch Med Res. 2002;33:281–9.

    PubMed  Google Scholar 

  22. Carmen JJ, Roeder BL, Nelson JL, Beckstead BL, Runyan CM, Schaalje GB, Robison RA, Pitt WG. Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl. 2004;18:237–45.

    PubMed  CAS  Google Scholar 

  23. Clegg JP, Guest JF. Modelling the cost-utility of bio-electric stimulation therapy compared to standard care in the treatment of elderly patients with chronic non-healing wounds in the UK. Curr Med Res Opin. 2007;23:871–83.

    PubMed  Google Scholar 

  24. Cole PS, Quisberg J, Melin MM. Adjuvant use of acoustic pressure wound therapy for treatment of chronic wounds: a retrospective analysis. J Wound Ostomy Continence Nurs. 2009;36:171–7.

    PubMed  Google Scholar 

  25. Daeschlein G, Assadian O, Kloth LC, Meinl C, Ney F, Kramer A. Antibacterial activity of positive and negative polarity low-voltage pulsed current (LVPC) on six typical gram-positive and gram-negative bacterial pathogens of chronic wounds. Wound Repair Regen. 2007;15:399–403.

    PubMed  Google Scholar 

  26. Edsberg LE, Brogan MS, Jaynes CD, Fries K. Topical hyperbaric oxygen and electrical stimulation: exploring potential synergy. Ostomy Wound Manage. 2002;48:42–50.

    PubMed  Google Scholar 

  27. Ennis WJ, Valdes W, Gainer M, Meneses P. Evaluation of clinical effectiveness of MIST ultrasound therapy for the healing of chronic wounds. Adv Skin Wound Care. 2006;19:437–46.

    PubMed  Google Scholar 

  28. European Pressure Ulcer Advisory Panel (EPUAP) and American National Pressure UlcerAdvisory Panel (NPUAP): quick reference guide, developed and released electronically in December. 2009. (http://www.epuap.org/guidelines/Final_Quick_Treatment.pdf).

  29. Expert Working Group. Vacuum assisted closure: recommendations for use. A consensus document. Int Wound J. 2008;5 Suppl 4:iii–19.

    Google Scholar 

  30. Fyfe MC, Chahl LA. Mast cell degranulation: a possible mechanism of action of therapeutic ultrasound. Ultrasound Med Biol. 1982;8 Suppl 1:62–5.

    Google Scholar 

  31. Gabriel A, Shores J, Bernstein B, de Leon J, Kamepalli R, Wolvos T, Baharestani MM, Gupta S. A clinical review of infected wound treatment with vacuum assisted closure (V.A.C.) therapy: experience and case series. Int Wound J. 2009;6:1–25.

    Google Scholar 

  32. Gardner SE, Frantz RA, Schmidt FL. Effect of electrical stimulation on chronic wound healing: a meta-analysis. Wound Repair Regen. 1999;7:495–503.

    PubMed  CAS  Google Scholar 

  33. Gehling ML, Samies JH. The effect of noncontact, low-intensity, low-frequency therapeutic ultrasound on lower-extremity chronic wound pain: a retrospective chart review. Ostomy Wound Manage. 2007;53:44–50.

    PubMed  Google Scholar 

  34. Geller SM, Longton JA. Ulceration of pyoderma gangrenosum treated with negative pressure wound therapy. J Am Podiatr Med Assoc. 2005;95:171–4.

    PubMed  Google Scholar 

  35. Graham ID, Harrison MB, Nelson EA, Lorimer K, Fisher A. Prevalence of lower-limb ulceration: a systematic review of prevalence studies. Adv Skin Wound Care. 2003;16:305–16.

    PubMed  Google Scholar 

  36. Hazan Z, Zumeris J, Jacob H, Raskin R, Kratysh G, Vishnia M, Dror N, Barliya T, Mandel M, Lavie G. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Agents Chemother. 2006;50:4144–52.

    PubMed  CAS  Google Scholar 

  37. Hinchliffe RJ, Valk GD, Apelqvist J, Armstrong DG, Bakker K, Game FL, Hartemann-Heurtier A, Löndahl M, Price PE, van Houtum WH, Jeffcoate WJ. A systematic review of the effectiveness of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev. 2008;24 Suppl 1:S119–44.

    PubMed  Google Scholar 

  38. Hinsenkamp M, Jercinovic A, de Graef C, Wilaert F, Heenen M. Effects of low frequency pulsed electrical current on keratinocytes in vitro. Bioelectromagnetics. 1997;18:250–4.

    PubMed  CAS  Google Scholar 

  39. Houghton PE, Kincaid CB, Lovell M, Campbell KE, Keast DH, Woodbury MG, Harris KA. Effect of electrical stimulation on chronic leg ulcer size and appearance. Phys Ther. 2003;83:17–28.

    PubMed  Google Scholar 

  40. Janković A, Binić I. Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers. Arch Dermatol Res. 2008;300:377–83.

    PubMed  Google Scholar 

  41. Jünger M, Arnold A, Zuder D, Stahl HW, Heising S. Local therapy and treatment costs of chronic, venous leg ulcers with electrical stimulation (Dermapulse): a prospective, placebo controlled, double blind trial. Wound Repair Regen. 2008;16:480–7.

    PubMed  Google Scholar 

  42. Kavros SJ, Schenck EC. Use of noncontact low-frequency ultrasound in the treatment of chronic foot and leg ulcerations: a 51-patient analysis. J Am Podiatr Med Assoc. 2007;97:95–101.

    PubMed  Google Scholar 

  43. Kavros SJ, Miller JL, Hanna SW. Treatment of ischemic wounds with noncontact, low-frequency ultrasound: the Mayo clinic experience, 2004–2006. Adv Skin Wound Care. 2007;20:221–6.

    PubMed  Google Scholar 

  44. Kavros SJ, Liedl DA, Boon AJ, Miller JL, Hobbs JA, Andrews KL. Expedited wound healing with noncontact, low-frequency ultrasound therapy in chronic wounds: a retrospective analysis. Adv Skin Wound Care. 2008;21:416–23.

    PubMed  Google Scholar 

  45. Khashram M, Huggan P, Ikram R, Chambers S, Roake JA, Lewis DR. Effect of TNP on the microbiology of venous leg ulcers: a pilot study. J Wound Care. 2009;18:164–7.

    PubMed  CAS  Google Scholar 

  46. Kloth LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds. 2005;4:23–44.

    PubMed  Google Scholar 

  47. Kloth LC, Berman JE, Nett M, Papanek PE, Dumit-Minkel S. A randomized controlled clinical trial to evaluate the effects of noncontact normothermic wound therapy on chronic full-thickness pressure ulcers. Adv Skin Wound Care. 2002;15:270–6.

    PubMed  Google Scholar 

  48. Körber A, Franckson T, Grabbe S, Dissemond J. Vacuum assisted closure device improves the take of mesh grafts in chronic leg ulcer patients. Dermatology. 2008;216:250–6.

    PubMed  Google Scholar 

  49. Kopera D, Kokol R, Berger C, Haas J. Does the use of low-level laser influence wound healing in chronic venous leg ulcers? J Wound Care. 2005;14:391–4.

    PubMed  CAS  Google Scholar 

  50. Kuo YR, Wang CT, Wang FS, Chiang YC, Wang CJ. Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen. 2009;17:522–30.

    PubMed  Google Scholar 

  51. Labanaris AP, Polykandriotis E, Horch RE. The effect of vacuum-assisted closure on lymph vessels in chronic wounds. J Plast Reconstr Aesthet Surg. 2009;62:1068–75.

    PubMed  Google Scholar 

  52. Lagan KM, McKenna T, Witherow A, Johns J, McDonough SM, Baxter GD. Low-intensity laser therapy/combined phototherapy in the management of chronic venous ulceration: a placebo-controlled study. J Clin Laser Med Surg. 2002;20:109–16.

    PubMed  Google Scholar 

  53. Lahmann NA, Halfens RJ, Dassen T. Pressure ulcers in German nursing homes and acute care hospitals: prevalence, frequency, and ulcer characteristics. Ostomy Wound Manage. 2006;52:20–33.

    PubMed  Google Scholar 

  54. Lai J, Pittelkow MR. Physiological effects of ultrasound mist on fibroblasts. Int J Dermatol. 2007;46:587–93.

    PubMed  Google Scholar 

  55. Lawson D, Petrofsky JS. A randomized control study on the effect of biphasic electrical stimulation in a warm room on skin blood flow and healing rates in chronic wounds of patients with and without diabetes. Med Sci Monit. 2007;13:CR258–63.

    PubMed  Google Scholar 

  56. Leaper D. Perfusion, oxygenation and warming. Int Wound J. 2007;4 Suppl 3:4–8.

    PubMed  Google Scholar 

  57. Lee BY, Wendell K, Al-Waili N, Butler G. Ultra-low microcurrent therapy: a novel approach for treatment of chronic resistant wounds. Adv Ther. 2007;24:1202–9.

    PubMed  CAS  Google Scholar 

  58. Lipovsky A, Nitzan Y, Lubart R. A possible mechanism for visible light-induced wound healing. Lasers Surg Med. 2008;40:509–14.

    PubMed  Google Scholar 

  59. Maier D, Beck A, Kinzl L, Bischoff M. The physics of vacuum therapy [German]. Zentralbl Chir. 2005;130:463–8.

    PubMed  CAS  Google Scholar 

  60. McCulloch J, Knight CA. Noncontact normothermic wound therapy and offloading in the treatment of neuropathic foot ulcers in patients with diabetes. Ostomy Wound Manage. 2002;48:38–44.

    PubMed  Google Scholar 

  61. Mercer JB, Nielsen SP, Hoffmann G. Improvement of wound healing by water-filtered infrared-A (wIRA) in patients with chronic venous stasis ulcers of the lower legs including evaluation using infrared thermography. Ger Med Sci. 2008;6:Doc11.

    PubMed  Google Scholar 

  62. Minatel DG, Frade MA, França SC, Enwemeka CS. Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med. 2009;41:433–41.

    PubMed  Google Scholar 

  63. Mouës CM, van den Bemd GJ, Meerding WJ, Hovius SE. An economic evaluation of the use of TNP on full-thickness wounds. J Wound Care. 2005;14:224–7.

    PubMed  Google Scholar 

  64. Mouës CM, van Toorenenbergen AW, Heule F, Hop WC, Hovius SE. The role of topical negative pressure in wound repair: expression of biochemical markers in wound fluid during wound healing. Wound Repair Regen. 2008;16:488–94.

    PubMed  Google Scholar 

  65. Moretti B, Notarnicola A, Maggio G, Moretti L, Pascone M, Tafuri S, Patella V. The management of neuropathic ulcers of the foot in diabetes by shock wave therapy. BMC Musculoskelet Disord. 2009;10:54.

    PubMed  Google Scholar 

  66. Ottstadt B, Drews B, Hartmann B. Does subaqual applied low-frequency ultrasound heal atrio-venous leg ulcers? [German]. Vasomed. 1988;10:24–32.

    Google Scholar 

  67. Panuncialman J, Falanga V. The science of wound bed preparation. Surg Clin North Am. 2009;89:611–26.

    PubMed  Google Scholar 

  68. Peschen M, Weichenthal M, Schöpf E, Vanscheidt W. Low-frequency ultrasound treatment of chronic venous leg ulcers in an outpatient therapy. Acta Derm Venereol. 1997;77:311–4.

    PubMed  CAS  Google Scholar 

  69. Petrofsky JS, Lawson D, Suh HJ, Rossi C, Zapata K, Broadwell E, Littleton L. The influence of local versus global heat on the healing of chronic wounds in patients with diabetes. Diabetes Technol Ther. 2007;9:535–44.

    PubMed  Google Scholar 

  70. Price PE, Fagervik-Morton H, Mudge EJ, Beele H, Ruiz JC, Nystrøm TH, Lindholm C, Maume S, Melby-Østergaard B, Peter Y, Romanelli M, Seppänen S, Serena TE, Sibbald G, Soriano JV, White W, Wollina U, Woo KY, Wyndham-White C, Harding KG. Dressing-related pain in patients with chronic wounds: an international patient perspective. Int Wound J. 2008;5:159–71.

    PubMed  Google Scholar 

  71. Radandt R. Low frequency ultrasound in wound healing [German]. Phys Rehab Kur Med. 2001;11:41–50.

    Google Scholar 

  72. Ramadan A, Elsaidy M, Zyada R. Effect of low-intensity direct current on the healing of chronic wounds: a literature review. J Wound Care. 2008;17:292–6.

    PubMed  CAS  Google Scholar 

  73. Ramundo J, Gray M. Is ultrasonic mist therapy effective for debriding chronic wounds? J Wound Ostomy Continence Nurs. 2008;35:579–83.

    PubMed  Google Scholar 

  74. Ravaghi H, Flemming K, Cullum N, Olyaee Manesh A Electromagnetic therapy for treating venous leg ulcers. Cochrane Database Syst Rev 2006;(2):CD002933.

    Google Scholar 

  75. Robertson L, Evans C, Fowkes FG. Epidemiology of chronic venous disease. Phlebology. 2008;23:103–11.

    PubMed  CAS  Google Scholar 

  76. Rosenblum J, Reinus C. The effect of a novel patch based therapeutic ultrasound device on the healing of diabetic foot ulcers. In: Poster presented at the 17th congress of the European Academy of Dermatology and Venereology, Paris, Sep 2008.

    Google Scholar 

  77. Rosenblum J, Gilead LT, Reinus C. From the histology laboratory to the wound care clinic: PainShield™ MD diathermy. In: Poster presented at the diabetic foot global conference, Los Angeles, Mar 2008.

    Google Scholar 

  78. Sackett D, Strauss S, Richardson W, Haynes RB. Evidence-based medicine: how to practice and teach EBM. 2nd ed. Edinburgh: Churchill Livingstone; 2000.

    Google Scholar 

  79. Saggini R, Figus A, Troccola A, Cocco V, Saggini A, Scuderi N. Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol. 2008;34:1261–71.

    PubMed  CAS  Google Scholar 

  80. Saltmarche AE. Low level laser therapy for healing acute and chronic wounds – the Extendicare experience. Int Wound J. 2008;5:351–60.

    PubMed  Google Scholar 

  81. Saxena V, Hwang CW, Huang S, Eichbaum Q, Ingber D, Orgill DP. Vacuum-assisted closure: microdeformations of wounds and cell proliferation. Plast Reconstr Surg. 2004;114:1086–96.

    PubMed  Google Scholar 

  82. Schaden W, Thiele R, Kölpl C, Pusch M, Nissan A, Attinger CE, Maniscalco-Theberge ME, Peoples GE, Elster EA, Stojadinovic A. Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res. 2007;143:1–12.

    PubMed  Google Scholar 

  83. Schmidt S, Wollina U, Looks A, Elsner P, Strauss B. Quality of life and strategies of coping with disease in patients with chronic leg ulcers. Dermatol Psychosom. 2000;1:27–34.

    Google Scholar 

  84. Schmidt WD, Liebold K, Fassler D, Wollina U. Contact-free spectroscopy of leg ulcers: principle, technique, and calculation of spectroscopic wound scores. J Invest Dermatol. 2001;116:531–5.

    PubMed  CAS  Google Scholar 

  85. Schultz GS, Barillo DJ, Mozingo DW, Chin GA, Wound Bed Advisory Board Members. Wound bed preparation and a brief history of TIME. Int Wound J. 2004;1:19–32.

    PubMed  Google Scholar 

  86. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003;11 Suppl 1:S1–28.

    PubMed  Google Scholar 

  87. Serena T, Lee SK, Lam K, Attar P, Meneses P, Ennis W. The impact of noncontact, nonthermal, low-frequency ultrasound on bacterial counts in experimental and chronic wounds. Ostomy Wound Manage. 2009;55:22–30.

    PubMed  Google Scholar 

  88. Setacci C, de Donato G, Setacci F, Chisci E. Diabetic patients: epidemiology and global impact. J Cardiovasc Surg (Torino). 2009;50:263–73.

    CAS  Google Scholar 

  89. Shirakawa M, Isseroff RR. Topical negative pressure devices: use for enhancement of healing chronic wounds. Arch Dermatol. 2005;141:1449–53.

    PubMed  Google Scholar 

  90. Sobanko JF, Alster TS. Efficacy of low-level laser therapy for chronic cutaneous ulceration in humans: a review and discussion. Dermatol Surg. 2008;34:991–1000.

    PubMed  CAS  Google Scholar 

  91. Soong HK, Parkinson WC, Bafna S, Sulik GL, Huang SCM. Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Invest Ophthalmol Vis Sci. 1990;31:2278–82.

    PubMed  CAS  Google Scholar 

  92. Stanisic MM, Provo BJ, Larson DL, Kloth LC. Wound debridement with 25 kHz ultrasound. Adv Skin Wound Care. 2005;18:484–90.

    PubMed  Google Scholar 

  93. Strauch B, Herman C, Dabb R, Ignarro LJ, Pilla AA. Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthet Surg J. 2009;29:135–43.

    PubMed  Google Scholar 

  94. Suchkova V, Carstensen EL, Francis CW. Ultrasound enhancement of fibrinolysis at frequencies of 27 to 100 kHz. Ultrasound Med Biol. 2002;28:377–82.

    PubMed  Google Scholar 

  95. Suh H, Petrofsky J, Fish A, Hernandez V, Mendoza E, Collins K, Yang T, Abdul A, Batt J, Lawson D. A new electrode design to improve outcomes in the treatment of chronic non-healing wounds in diabetes. Diabetes Technol Ther. 2009;11:315–22.

    PubMed  CAS  Google Scholar 

  96. Suh H, Petrofsky JS, Lo T, Lawson D, Yu T, Pfeifer TM, Morawski T. The combined effect of a three-channel electrode delivery system with local heat on the healing of chronic wounds. Diabetes Technol Ther. 2009;11:681–8.

    PubMed  Google Scholar 

  97. Tan J, Abisi S, Smith A, Burnand KG. A painless method of ultrasonically assisted debridement of chronic leg ulcers: a pilot study. Eur J Vasc Endovasc Surg. 2007;33:234–8.

    PubMed  CAS  Google Scholar 

  98. Thomas DR, Diebold MR, Eggemeyer LM. A controlled, randomized, comparative study of a radiant heat bandage on the healing of stage 3–4 pressure ulcers: a pilot study. J Am Med Dir Assoc. 2005;6:46–9.

    PubMed  Google Scholar 

  99. Ubbink DT, Westerbos SJ, Evans D, Land L, Vermeulen H. Topical negative pressure for treating chronic wounds. Cochrane Database Syst Rev 2008a;(3):CD001898.

    Google Scholar 

  100. Ubbink DT, Westerbos SJ, Nelson EA, Vermeulen H. A systematic review of topical negative pressure therapy for acute and chronic wounds. Br J Surg. 2008;95:685–92.

    PubMed  CAS  Google Scholar 

  101. Uhlemann C, Wollina U. Aspects of physiological effects of therapeutic ultrasound in wound management [German]. Phlebologie. 2003;32:81–5.

    Google Scholar 

  102. Uhlemann C, Wollina U, Liebold K, Schreiber TU. Venous leg ulcer therapy with low-frequency ultrasound [German]. Phys Rehab Kur Med. 2001;11:216–20.

    Google Scholar 

  103. Uhlemann C, Heinig B, Wollina U. Therapeutic ultrasound in lower extremity wound management. Int J Low Extrem Wounds. 2003;2:152–7.

    PubMed  Google Scholar 

  104. Vieira-Santos IC, Souza WV, Carvalho EF, Medeiros MC, Nóbrega MG, Lima PM. Prevalence of diabetic foot and associated factors in the family health units of the city of Recife, Pernambuco State, Brazil, in 2005 [Portuguese]. Cad Saude Publica. 2008;24:2861–70.

    PubMed  Google Scholar 

  105. Vikatmaa P, Juutilainen V, Kuukasjärvi P, Malmivaara A. Negative pressure wound therapy: a systematic review on effectiveness and safety. Eur J Vasc Endovasc Surg. 2008;36:438–48.

    PubMed  CAS  Google Scholar 

  106. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC. Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg. 2005;23:167–71.

    PubMed  CAS  Google Scholar 

  107. Vowden K, Vowden P, Posnett J. The resource costs of wound care in Bradford and Airedale primary care trust in the UK. J Wound Care. 2009;18:93–4, 6–8, 100 passim.

    PubMed  CAS  Google Scholar 

  108. Walker N, Rodgers A, Birchall N, Norton R, MacMahon S. The occurrence of leg ulcers in Auckland: results of a population-based study. N Z Med J. 2002;115:159–62.

    PubMed  Google Scholar 

  109. Whelan HT, Smits Jr RL, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg. 2001;19:305–14.

    PubMed  CAS  Google Scholar 

  110. Wehner H, von Ardenne A, Kaltofen S. Whole-body hyperthermia with water-filtered infrared radiation: technical-physical aspects and clinical experiences. Int J Hyperthermia. 2001;17:19–30.

    PubMed  CAS  Google Scholar 

  111. Wilkes R, Zhao Y, Cunningham K, Kieswetter K, Haridas B. 3D strain measurement in soft tissue: demonstration of a novel inverse finite element model algorithm on MicroCT images of a tissue phantom exposed to negative pressure wound therapy. J Mech Behav Biomed Mater. 2009;2:272–87.

    PubMed  CAS  Google Scholar 

  112. Woo KY, Sibbald RG. Vacuum-assisted closure home care training: a process to link education to improved patient outcomes. Int Wound J. 2008;5 Suppl 2:1–9.

    PubMed  Google Scholar 

  113. Wollina U. Pyoderma gangraenosum – a review. Orphanet J Rare Dis. 2007;2:19.

    PubMed  Google Scholar 

  114. Wollina U, Heinig B. Low-frequency ultrasound for the treatment of chronic wounds [German]. Z Wundheilung. 2009;14:74–91.

    Google Scholar 

  115. Wollina U, Hansel G, Krönert C, Heinig B. Vacuum assisted closure therapy in lymphoedema-associated leg ulcers. J Wound Care. 2010;19:15–7.

    PubMed  CAS  Google Scholar 

  116. Woodbury MG, Houghton PE. Prevalence of pressure ulcers in Canadian healthcare settings. Ostomy Wound Manage. 2004;50:22–4, 6, 8, 30, 32, 34, 36–8.

    PubMed  Google Scholar 

  117. Wust P, Riess H, Hildebrandt B, Löffel J, Deja M, Ahlers O, Kerner T, von Ardenne A, Felix R. Feasibility and analysis of thermal parameters for the whole-body-hyperthermia system IRATHERM-2000. Int J Hyperthermia. 2000;16:325–39.

    PubMed  CAS  Google Scholar 

  118. Young JB, Dobrzanski S. Pressure sores. Epidemiology and current management concepts. Drugs Aging. 1992;2:42–57.

    PubMed  CAS  Google Scholar 

  119. Yu W, Naim JO, Lanzafame RJ. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med. 1997;20:56–63.

    PubMed  CAS  Google Scholar 

  120. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, Yang M. CDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol. 2003;120:849–57.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Wollina M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Wollina, U., Heinig, B., Kloth, L. (2012). The Use of Biophysical Technologies in Chronic Wound Management. In: Mani, R., Romanelli, M., Shukla, V. (eds) Measurements in Wound Healing. Springer, London. https://doi.org/10.1007/978-1-4471-2987-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2987-5_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2986-8

  • Online ISBN: 978-1-4471-2987-5

  • eBook Packages: MedicineMedicine (R0)