Skip to main content

Measurement of Biomarkers for Impaired Healing in Fluids and Tissues

  • Chapter
  • First Online:

Abstract

Assessments of the molecular and cellular environment of acute, healing skin wounds demonstrates that healing progresses through four distinct phases of hemostasis, inflammation, repair, and remodeling. Extensive laboratory analyses of wound fluids and biopsies from acute wounds in each of these phases show the actions of cells are tightly regulated by key cytokines, growth factors, proteases, and extracellular matrix components in a process of dynamic reciprocal signaling. In contrast, analyses of fluids and biopsies from delayed healing or dehisced acute wounds or chronic wounds show there are extensive alterations of these key regulatory proteins that disrupt the dynamic reciprocal signaling and results in impaired healing. Typical alterations include elevated levels of planktonic and biofilm bacteria, elevated levels of pro-inflammatory cytokines (TNFa, IL-1), elevated levels of proteases (matrix metalloproteinases (MMPs) and neutrophil elastase (NE)), denatured extracellular matrix proteins (collagen, fibronectin) and cellular receptors (TGFb-RII, integrins). Correlation of these alterations with healing of chronic wounds show that healing only progresses when the abnormal molecular environment is corrected by appropriate clinical interventions and treatments. To help wound care providers assess the molecular status of wounds, rapid, point-of-care detectors for key biomarkers have been developed for measuring levels of MMPs and NE in wound fluids. Comprehensive identification of bacterial and fungal species in wound biopsies are available using rapid, advanced, polymerase chain reaction (PCR) technologies that identify unique genomic nucleotide sequences of micro-organisms. These measurements of molecular biomarkers and microbiological status of wounds enable optimal wound care therapies to be selected for individual patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bennett NT, Schultz GS. Growth factors and wound healing: Part II. Role in normal and chronic wound healing. Am J Surg. 1993;166:74–81.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg. 1993;165:728–37.

    Article  PubMed  CAS  Google Scholar 

  3. Lawrence WT. Physiology of the acute wound. Clin Plast Surg. 1998;25(3):321–40.

    PubMed  CAS  Google Scholar 

  4. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17(2):153–62.

    Article  PubMed  Google Scholar 

  5. Breuing K, Andree C, Helo G, Slama J, Liu PY, Eriksson E. Growth factors in the repair of partial thickness porcine skin wounds. Plast Reconstr Surg. 1997;100(3):657–64.

    Article  PubMed  CAS  Google Scholar 

  6. Vogt PM, Lehnhardt M, Wagner D, Jansen V, Krieg M, Steinau HU. Determination of endogenous growth factors in human wound fluid: temporal presence and profiles of secretion. Plast Reconstr Surg. 1998;102(1):117–23.

    Article  PubMed  CAS  Google Scholar 

  7. Grayson LS, Hansbrough JF, Zapata-Sirvent RL, Dore CA, Morgan JL, Nicolson MA. Quantitation of cytokine levels in skin graft donor site wound fluid. Burns. 1993;19(5):401–5.

    Article  PubMed  CAS  Google Scholar 

  8. Di VG, Patti R, D’Agostino P, Caruso G, Arcara M, Buscemi S, Bonventre S, Ferlazzo V, Arcoleo F, Cillari E. Cytokines and growth factors in wound drainage fluid from patients undergoing incisional hernia repair. Wound Repair Regen. 2006;14(3):259–64.

    Article  Google Scholar 

  9. Baker EA, Leaper DJ. Proteinases, their inhibitors, and cytokine profiles in acute wound fluid. Wound Repair Regen. 2000;8(5):392–8.

    Article  PubMed  CAS  Google Scholar 

  10. Baker EA, Leaper DJ. Profiles of matrix metalloproteinases and their tissue inhibitors in intraperitoneal drainage fluid: relationship to wound healing. Wound Repair Regen. 2003;11(4):268–74.

    Article  PubMed  Google Scholar 

  11. Hahm G, Glaser JJ, Elster EA. Biomarkers to predict wound healing: the future of complex war wound management. Plast Reconstr Surg. 2011;127 Suppl 1:21S–6.

    PubMed  CAS  Google Scholar 

  12. Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177(5):498–505.

    Article  PubMed  CAS  Google Scholar 

  13. Greidanus NV, Masri BA, Garbuz DS, Wilson SD, McAlinden MG, Xu M, Duncan CP. Use of erythrocyte sedimentation rate and C-reactive protein level to diagnose infection before revision total knee arthroplasty. A prospective evaluation. J Bone Joint Surg Am. 2007;89(7):1409–16.

    Article  PubMed  Google Scholar 

  14. Utz ER, Elster EA, Tadaki DK, Gage F, Perdue PW, Forsberg JA, Stojadinovic A, Hawksworth JS, Brown TS. Metalloproteinase expression is associated with traumatic wound failure. J Surg Res. 2010;159(2):633–9.

    Article  PubMed  CAS  Google Scholar 

  15. Forsberg JA, Elster EA, Andersen RC, Nylen E, Brown TS, Rose MW, Stojadinovic A, Becker KL, McGuigan FX. Correlation of procalcitonin and cytokine expression with dehiscence of wartime extremity wounds. J Bone Joint Surg Am. 2008;90(3):580–8.

    Article  PubMed  Google Scholar 

  16. Hawksworth JS, Stojadinovic A, Gage FA, Tadaki DK, Perdue PW, Forsberg J, Davis TA, Dunne JR, Denobile JW, Brown TS, Elster EA. Inflammatory biomarkers in combat wound healing. Ann Surg. 2009;250(6):1002–7.

    Article  PubMed  Google Scholar 

  17. Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4:411–20.

    Article  PubMed  CAS  Google Scholar 

  18. Bucalo B, Eaglstein WH, Falanga V. Inhibition of cell proliferation by chronic wound fluid. Wound Repair Regen. 1993;1:181–6.

    Article  PubMed  CAS  Google Scholar 

  19. Katz MH, Alvarez AF, Kirsner RS, Eaglstein WH, Falanga V. Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth. J Am Acad Dermatol. 1991;25:1054–8.

    Article  PubMed  CAS  Google Scholar 

  20. Harris IR, Yee KC, Walters CE, Cunliffe WJ, Kearney JN, Wood EJ, Ingham E. Cytokine and protease levels in healing and non-healing chronic venous leg ulcers. Exp Dermatol. 1995;4:342–9.

    Article  PubMed  CAS  Google Scholar 

  21. Trengove NJ, Bielefeldt-Ohmann H, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen. 2000;8(1):13–25.

    Article  PubMed  CAS  Google Scholar 

  22. Yager DR, Nwomeh BC. The proteolytic environment of chronic wounds. Wound Repair Regen. 1999;7(6):433–41.

    Article  PubMed  CAS  Google Scholar 

  23. Nwomeh BC, Yager DR, Cohen IK. Physiology of the chronic wound. Clin Plast Surg. 1998;25(3):341–56.

    PubMed  CAS  Google Scholar 

  24. Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 1999;7(6):442–52.

    Article  PubMed  CAS  Google Scholar 

  25. Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol. 1996;107(5):743–8.

    Article  PubMed  CAS  Google Scholar 

  26. Rogers AA, Burnett S, Moore JC, Shakespeare PG, Chen WYJ. Involvement of proeolytic enzymes-plasminogen activators and matrix metalloproteinases-in the pathophysiology of pressure ulcers. Wound Repair Regen. 1995;3:273–83.

    Article  PubMed  CAS  Google Scholar 

  27. Bullen EC, Longaker MT, Updike DL, Benton R, Ladin D, Hou Z. Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol. 1995;104:236–40.

    Article  PubMed  CAS  Google Scholar 

  28. Ladwig GP, Robson MC, Liu R, Kuhn MA, Muir DF, Schultz GS. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen. 2002;10(1):26–37.

    Article  PubMed  Google Scholar 

  29. Rao CN, Ladin DA, Liu YY, Chilukuri K, Hou ZZ, Woodley DT. Alpha 1-antitrypsin is degraded and non-functional in chronic wounds but intact and functional in acute wounds: the inhibitor protects fibronectin from degradation by chronic wound fluid enzymes. J Invest Dermatol. 1995;105(4):572–8.

    Article  PubMed  CAS  Google Scholar 

  30. Wysocki AB, Staiano-Coico L, Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol. 1993;101:64–8.

    Article  PubMed  CAS  Google Scholar 

  31. Grinnel F, Zhu M. Fibronectin degradation in chronic wounds depends on the relative levels of elastase, α1-proteinase inhibitor, and α2-macroglbulin. J Invest Dermatol. 1996;106:335–41.

    Article  Google Scholar 

  32. Tarnuzzer RW, Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 1996;4:321–5.

    Article  PubMed  CAS  Google Scholar 

  33. Yager DR, Chen SM, Ward SI, Olutoye OO, Diegelmann RF, Cohen IK. Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Repair Regen. 1997;5:23–32.

    Article  Google Scholar 

  34. Steed DL, Donohoe D, Webster MW, Lindsley L. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. J Am Coll Surg. 1996;183:61–4.

    PubMed  CAS  Google Scholar 

  35. Phillips PL, Wolcott RD, Fletcher J, Schultz GS. Biofilms made easy. Wounds Int. 2010;1(3):1–6.

    Google Scholar 

  36. James GA, Swogger E, Wolcott R, Pulcini ED, Secor P, Sestrich J, Costerton JW, Stewart PS. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44.

    Article  PubMed  Google Scholar 

  37. Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 2008;8(1):43.

    Article  PubMed  Google Scholar 

  38. Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS, Dowd SE. Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care. 2010;19(8):320–8.

    PubMed  CAS  Google Scholar 

  39. Rhoads DD, Wolcott RD, Percival SL. Biofilms in wounds: management strategies. J Wound Care. 2008;17(11):502–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Schultz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Schultz, G.S., Gibson, D.J. (2012). Measurement of Biomarkers for Impaired Healing in Fluids and Tissues. In: Mani, R., Romanelli, M., Shukla, V. (eds) Measurements in Wound Healing. Springer, London. https://doi.org/10.1007/978-1-4471-2987-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2987-5_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2986-8

  • Online ISBN: 978-1-4471-2987-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics