Advertisement

Irradiation Damage

  • Wolfgang Hoffelner
Chapter

Abstract

Irradiation damage is one of the most important damage mechanisms for nuclear materials. Neutrons transfer their energy to atoms which start to jump creating vacancies and interstitials being responsible for formation of defect clusters or microstructural changes (segregations, phase reactions). Nuclear reactions or transmutation can create alpha particle emitters which leads to helium gas which has to be accomodated by the material. All these effects can significantly deteriorate materials properties and limit the life-time of components. In the first part of this chapter an introduction into the most important radiation damage effects will be given. In the second part the consequences of irradiation damage (hardening, embrittlement, segregation, swelling, radiation creep) of components for current and future nuclear plants will be discussed.

Keywords

Dislocation Loop Oxide Dispersion Strengthened Defect Cluster Reactor Pressure Vessel Thermal Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schilling W, Ullmaier H (1994) Physics of radiation damage in metals. Mater Sci Technol VCH 10B:187Google Scholar
  2. 2.
    Ullmaier H, Schilling W (1980) Radiation damage in metallic reactor materials. In: Physics of modern materials, vol 1. IAEA ViennaGoogle Scholar
  3. 3.
    Was G (2007) Radiation materials science package. CD The minerals metals and materials society. 184 Thorn Hill Road Warrendale PA 15086 USAGoogle Scholar
  4. 4.
    Was G (2007) Fundamentals of radiation materials science. Springer, Berlin-HeidelbergGoogle Scholar
  5. 5.
    Seeger A (1962), Radiation damage in solids 1. IAEA Vienna: 101Google Scholar
  6. 6.
    Greenwood LR (1994) Neutron interactions with recoil spectra. J Nucl Mater 216:29–44CrossRefGoogle Scholar
  7. 7.
    Zinkle SJ, Maziasz PJ, Stoller RE (1993) Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J Nucl Mater 206:266–286CrossRefGoogle Scholar
  8. 8.
    Ullmaier H (1984) The influence of helium on the bulk properties of fusion reactor structural materials. Nucl Fusion 24:1039CrossRefGoogle Scholar
  9. 9.
    Schilling W, Burger G, Isebeck K, Wenzl H (1970) In: Seeger A, Schumacher D, Schilling W, Diehl J (eds) Vacancies and interstitials in metals. Amsterdam North Holland Phys PublicationGoogle Scholar
  10. 10.
    Ehrhart P (1991) In: Ullmaier H (ed) Landolt-Bornstein 111/25 atomic defects in metals. Berlin, Springer-VerlagGoogle Scholar
  11. 11.
    Wiedersich H (1986) In: Physics of radiation effects in crystals Elsevier 237Google Scholar
  12. 12.
    Wiedersich H (1991) Effects of the primary recoil spectrum on microstructural evolution. J Nucl Mater 1799 181:70–75Google Scholar
  13. 13.
    Wiedersich H (1991) Evolution of defect cluster distribution during irradiation, ANL/CP—72655Google Scholar
  14. 14.
    Zinkle SJ (2008) Microstructures and mechanical properties of irradiated metals and alloys. In: Ghetta V et al. (eds) Materials issues for generation IV systems. Springer Science+Business Media B V, pp 227–244Google Scholar
  15. 15.
    Bacon DJ, Gao F, Osetsky YN (2000) The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J Nucl Mater 276:1–12CrossRefGoogle Scholar
  16. 16.
    Bacon DJ, Osetsky YN, Stoller RH, Voskoboinikov RE (2003) MD description of damage production in displacement cascades in copper and alpha-iron. J Nucl Mater 323(2–3):152–162CrossRefGoogle Scholar
  17. 17.
    Singh NB, Zinkle SJ (1993) Defect accumulation in pure fcc metals in the transient regime: a review. J Nucl Mater 206:212–229CrossRefGoogle Scholar
  18. 18.
    Eldrup M, Singh BN, Zinkle SJ, Buyn TS, Farrel K (2002) Dose dependence of defect accumulation in neutron irradiated copper and iron. J Nucl Mater 307–311:912–917CrossRefGoogle Scholar
  19. 19.
    Zinkle SJ (2005) Fusion materials science: overview of challenges and recent progress. Phys Plasmas 12(5):058101Google Scholar
  20. 20.
    Zinkle SJ, Singh BN (2000) Microstructure of Cu-Ni alloys neutron irradiated at 210 and 420 °C to 14 dpa. J Nucl Mater 283–287:306–312CrossRefGoogle Scholar
  21. 21.
    Zinkle SJ, Snead LL (1995) Microstructure of copper and nickel irradiated with fission neutrons near 230 °C. J Nucl Mater 225:123–131CrossRefGoogle Scholar
  22. 22.
    Yao Z, Schäublin R, Victoria M (2003) Irradiation induced behavior of pure Ni single crystal irradiated with high energy protons. J Nucl Mater 323(2–3):388–393CrossRefGoogle Scholar
  23. 23.
    Zinkle SJ, Horsewell A, Singh BN, Sommer WF (1994) Defect microstructure in copper alloys irradiated with 750 MeV protons. J Nucl Mater 212–215:132–138CrossRefGoogle Scholar
  24. 24.
    Mansur LK, Lee EH (1991) Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys. J Nucl Mater 179–181:105–110CrossRefGoogle Scholar
  25. 25.
    Maziasz PJ (1993) Overview of microstructural evolution in neutron-irradiated austenitic stainless steels. J Nucl Mater 205:118–145CrossRefGoogle Scholar
  26. 26.
    Raj B, Mannan SL, Vasudeva PR, Rao A, Mathew MD (2002) Development of fuels and structural materials for fast breeder reactors. Sadhana 27(5):527–558CrossRefGoogle Scholar
  27. 27.
    Marwick AD (1978) Segregation in irradiated alloys: the inverse Kirkendall effect and the effect of constitution on void swelling. J Phys F Metal Phys 8 9Google Scholar
  28. 28.
    Was GS, Busby J, Andresen PL (2006) Effect of irradiation on stress-corrosion cracking and corrosion in light water reactors. In: Cramer SD, Covino BS (eds) ASM Handbook 13C corrosion environments and industries ASM international, pp 386–414 doi: 10.1361/asmhba0004147
  29. 29.
    Bruemmer SM, Simonen EP, Scott PM, Andresen PL, Was GS, Nelson JL (1999) Radiation-induced material changes and susceptibility intergranular failure of light-water-reactor core internals. J Nucl Mater 274:299–314CrossRefGoogle Scholar
  30. 30.
    Chen J, Jung P, Pouchon MA, Rebac T, Hoffelner W (2008) Irradiation creep and precipitation in a ferritic ODS steel under helium implantation. J Nucl Mater 373:22–27CrossRefGoogle Scholar
  31. 31.
    Valizadeh S, Comstock RJ, Dahlbäck M, Zhou G, Wright J, Hallstadius L, Romero J, Ledergerber G, Abolhassani S, Jädernäs D, Mader E (2010) Effects of secondary phase particle dissolution on the in-reactor performance of BWR cladding. In: 16th Zr International symposium chengdu China. http://www.astm.org/COMMIT/B10_Zirc_Presentations/5.3_Valizadeh_-_SPP_BWR.pdf. 9–13 May 2010
  32. 32.
    Snead LL, Zinkle SJ, Hay JC, Osborne MC (1998) Amorphization of SiC under ion and neutron irradiation nuclear instruments and methods in physics research section B: beam interactions with materials and atoms, Vol 141. Issues 1–4, May 1998: pp 123–132Google Scholar
  33. 33.
    Barnes RS (1965) Nature (London) 206:1307Google Scholar
  34. 34.
    Harries DR (1966) J Brit Nucl Energy Soc 5:74Google Scholar
  35. 35.
    Mansur LK, Grossbeck ML (1988) J Nucl Mater 155–157:130–147Google Scholar
  36. 36.
    Garner FA (2010) Void swelling and irradiation creep in light water reactor environments. In: Tipping PG (ed) Understanding and mitigating ageing in nuclear power plants. Woodhead, pp 308–356Google Scholar
  37. 37.
    Russel KC (1971) Acta Metall 19:753Google Scholar
  38. 38.
    Katz JL, Wiedersich H (1971) Chem Phys 55:1414Google Scholar
  39. 39.
    Wolfer WG (1984) Advances in void swelling and helium bubble physics. J Nucl Mater 122–123:367–378CrossRefGoogle Scholar
  40. 40.
    Gilbert ER, Kaulitz DC, Holmes JJ, Claudsen TT (1972) In: Proceedings conference on irradiation embrittlement and creep in fuel cladding and core components. British Nuclear Energy Society London 1972, pp 239–251Google Scholar
  41. 41.
    Garner FA (1994) Chapter 6: Irradiation performance of cladding and structural steels in liquid metal reactors. Materials Science and Technology: A Comprehensive Treatment. 10A VCH Publishers, pp 419–543Google Scholar
  42. 42.
    Woo CH, Garner FA (1999) J Nucl Mater 271–272:78–83Google Scholar
  43. 43.
    Hoffelner W, Chen J, Pouchon M (2006) Thermal and irradiation creep of advanced high temperature materials. In: Proceedings HTR2006 3rd international topical meeting on high temperature reactor technology, Johannesburg, South Africa. E 00000038 1–4 Oct 2006Google Scholar
  44. 44.
    Garner FA, Wolfer WG, Brager HR (1979) A reassessment of the role of stress in development of radiation-induced microstructure. In: Sprague JA, Kramer D (eds) Effects of radiation on structural materials. ASTM STP 683. ASTM pp 160–183Google Scholar
  45. 45.
    Hesketh R (1962) Philos Mag 7:417–1420Google Scholar
  46. 46.
    Henager CH, Simonen EP (1985) Critical assessment of low fluence irradiation creep mechanisms. In: Garner FA, Perrin JS (eds) Effects of radiation on materials: twelfth international symposium ASTM STP 870 ASTM, pp 75–98Google Scholar
  47. 47.
    Chen J et al. (2010) Paul Scherrer Institut NES Scientific Highlights 2010, pp 46–47Google Scholar
  48. 48.
    Chen J, Jung P, Nazmy M, Hoffelner W (2006) In situ creep under helium implantation of titanium–aluminium alloy. J Nucl Mater 352:36–41CrossRefGoogle Scholar
  49. 49.
    Grossbeck ML, Ehrlich K, Wassilew C (1990) An assessment of tensile, irradiation creep, creep rupture, and fatigue behavior in austenitic stainless steels with emphasis on spectral effects. J Nucl Mater 174(2–3):264–281CrossRefGoogle Scholar
  50. 50.
    Pouchon MA, Chen J, Hoffelner W (2009) He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl. Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms 267 8–9 (2009) 1500–1504. (doi: 10.1016/j.nimb.2009.01.119)
  51. 51.
    Robertson JP, Klueh RL, Shiba K, Rowcliffe AF (1997) Radiation hardening and and deformation behaviour of irradiated ferritic-martensitc steels. http://www.ms.ornl.gov/fusionreactor/pdf/dec1997/paper24.pdf. Accessed 3 Nov 2011
  52. 52.
    Klueh RL, Alexander DJ (1992) In: Stoller RE, Kumar AS, Gelles DS (eds) Effects of radiation on materials: 15th international symposium. ASTM STP 1125 American society for testing and materials Philadelphia, p 1256Google Scholar
  53. 53.
    Klueh RL, Shiba K, Sokolov MA (2008) Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening. J Nucl Mater 377:427–437CrossRefGoogle Scholar
  54. 54.
    Hoffelner W (2010) Damage assessment in structural metallic materials for advanced nuclear plants. J Mat Sci 45:2247–2257CrossRefGoogle Scholar
  55. 55.
    James LA, Williams JA (1973) The effect of temperature and neutron irradiation upon the fatigue crack propagation behavior of ASTM A533-B steel. J Nucl Mater 47:17–22CrossRefGoogle Scholar
  56. 56.
    James LA (1976) The effect of fast neutron irradiation upon the fatigue crack propagation behavior of two austenitic stainless steels. J Nucl Mater 59:183–191CrossRefGoogle Scholar
  57. 57.
    Magnusson P, Chen J, Hoffelner W (2009) Thermal and irradiation Creep behavior of a Titanium Aluminide in advanced nuclear plant environments. Metall Mater Trans 40A:2837CrossRefGoogle Scholar
  58. 58.
    Bloom EE, Stiegler J (1972) Effect of irradiation on the microstructure and creep-rupture properties of type 316 stainless steel. ORNL http://www.osti.gov/bridge/servlets/purl/4632343-ATLvL5/4632343.pdf. Accessed 3 Nov 2011
  59. 59.
    Puigh RJ, Hamilton ML (1987) In-Reactor creep rupture behavior of the D19 and 316 alloys. In: Garner FA, Henager CH, Igata N (eds) Influence of radiation on material properties. 13th International symposium Part II ASTM STP 957 ASTMGoogle Scholar
  60. 60.
    Wassiliew C, Schneider W, Ehrlich K (1986) Creep and creep-rupture properties of type 1.4970 stainless steel during and after irradiation. Radiat Eff 101:201–219Google Scholar
  61. 61.
    Scholz R, Mueller R (1996) Irradiation creep-fatigue interaction of type 3 16L stainless steel. J Nucl Mater 233–237:169–172CrossRefGoogle Scholar
  62. 62.
    IAEA (2000) Irradiation damage in graphite due to fast neutrons in fission and fusion systems. IAEA-TECDOC-1154Google Scholar
  63. 63.
    Ball DR (2008) Graphite for high temperature gas-cooled nuclear eactors. ASME LlC STP-NU-009Google Scholar
  64. 64.
    Burchell TD (1999) Carbon materials for advanced technologies. ISBN: 0080426832/0-08-042683-2) ElsevierGoogle Scholar
  65. 65.
    Katoh Y, Wilson DF, Forsberg CW (2007) Assessment of Silicon Carbide composites for advanced salt-cooled reactors. ORNL/TM-2007/168 Revision 1Google Scholar
  66. 66.
    Pouchon MA, Rebac T, Chen J, Dai Y, Hoffelner W (2011) Ceramics composites for next generation nuclear reactors. In: Proceedings of GLOBAL 2011 Makuhari, Japan, Dec 11–16, 2011 Paper No. 358363Google Scholar
  67. 67.
    Ozawa K, Katoh Y, Snead LL, Nozawa T (2010) Effect of neutron irradiation on fracture resistance of advanced SiC/SiC composites. Fusion materuials semiannual progress report. DOE-ER-0313/47Google Scholar
  68. 68.
    Tractebel Engineering (2004) Thermal ageing of “Western” RPV steels, Athena final conference—Rome— 25–27 Oct 2004Google Scholar
  69. 69.
    Corwin WR, Nanstad RK, Alexander DJ, Odette GR, Stoller RE, Wang JA (1995) Thermal embrittlement of reactor vessel steels. ORNL. http://www.osti.gov/bridge/servlets/purl/69435-Cx2yKA/webviewable/69435.pdf. Accessed 3 Nov 2011
  70. 70.
    Odette GR, Lucas GE (2001) Embrittlement of nuclear reactor pressure vessels. JOM 53(7):18–22CrossRefGoogle Scholar
  71. 71.
    Hashmi MF, Wu SJ, Li XH (2005) Neutron irradiation embrittlement modeling in RPV-steels-an overview. In: 18th International conference on structural mechanics in reactor technology (SMiRT 18) Beijing China, 7–12 Aug 2005. SMiRT18-F01-8Google Scholar
  72. 72.
    Steele LE (ed) (1993) Radiation embrittlement of nuclear reactor pressure vessel steels: an international review (Third Volume)Google Scholar
  73. 73.
    Miller MK, Sokolov MA, Nanstad RK, Russel KF (2006) J Nucl Mater 351:216–222CrossRefGoogle Scholar
  74. 74.
    Bergner F, Ulbricht A, Viehrig HW (2009) Acceleration of irradiation hardening of low-copper reactor pressure vessel steel observed by means of SANS and tensile testing. Philos Mag Lett 89(12):795–805CrossRefGoogle Scholar
  75. 75.
    Odette GR, Wirth BD (1997) J Nucl Mater 251:157CrossRefGoogle Scholar
  76. 76.
    Odette GR, Lucas GE (1998) Rad Eff Def Sol 144:189CrossRefGoogle Scholar
  77. 77.
    Adamson RB (2000) Effects of neutron irradiation on microstructure and properties of Zircaloy. In: ASTM International in STP 1354, Zirconium in the nuclear industry: twelfth international symposium, 2000, pp 15–31Google Scholar
  78. 78.
    Holt RA, Gilbert RW (1986) Component dislocations in annealed Zircaloy irradiated at about 570 K. J Nucl Mater 137(1986):185–189CrossRefGoogle Scholar
  79. 79.
    McGrath MA, Yagnik S, Jenssen H (2010) Effects of pre-irradiation on irradiation growth & creep of re-crystallized Zircaloy-4. 16th International symposium on Zirconium in the nuclear industry, 9–13 May 2010, Chengdu, Sichuan Province China. http://www.astm.org/COMMIT/B10_Zirc_Presentations/6.5_ASTM-2010-creep-growth.pdf. Accessed 5 Nov 2011
  80. 80.
    Herring RA, Northwood DO (1988) Microstructural characterization of neutron irradiated and post-irradiation annealed Zircaloy-2. J Nucl Mater 159:386–396CrossRefGoogle Scholar
  81. 81.
    Garner FA, Porollo SI, Yu V, Konobeev YV, Maksimkin OP (2005) Void swelling of austenitic steels irradiated with neutrons at low temperatures and very low dpa rates. In: Allen TR, King PJ, Nelson L (eds) Proceedings of the 12th international conference on environmental degradation of materials in nuclear power system—Water reactors. TMS The minerals metals & materials society, pp 439–448Google Scholar
  82. 82.
    Garner FA (2010) Void swelling and irradiation creep in light water (LWR) environments, in Understanding and mitigating ageing in nuclear power plants. In: Ph G, Tipping PG (ed) Woodhead Publication Ltd, pp 308–356Google Scholar
  83. 83.
    Yoon JH, Yoon EP (2006) Fracture toughness and the master curve for modified 9Cr–1Mo steel. Metals Mater Int 12 6:477–482Google Scholar
  84. 84.
    Maloy SA, James MR, Toloczko MB (2003) The high temperature tensile properties of ferritic-martensitic and austenitic steels after irradiation in an 800 MeV proton beam. In: Conference proceedings seventh information exchange meeting on actinide and fission product partitioning and transmutation 14–16 Oct 2002, Jeju, Republic of Korea. NEA, pp 669–678Google Scholar
  85. 85.
    Buongiorno J, MacDonald PE (2003) Supercritical water reactor (SCWR) progress report for the FY-03 generation-IV R&D activities for the development of the SCWR in the U.S. INEEL/EXT-03-01210, 30 Sept 2003Google Scholar
  86. 86.
    Straalsund JL, Powell RW, Chin BA (1982) Radiation damage in austenitic steels. J Nucl Mater 108–109:299–305CrossRefGoogle Scholar
  87. 87.
    Yvon P, Carré F (2009) Structural materials challenges for advanced reactor systems. J Nucl Mater 385:217–222CrossRefGoogle Scholar
  88. 88.
    Raj B, Ramachandran D, Vijayalakshmi M (2009) Development of cladding materials for sodium-cooled fast reactors in India. Trans Indian Inst Met 62(2):89–94CrossRefGoogle Scholar
  89. 89.
    Latha S, Mathew MD, Rao KBS, Mannan SL (1996) Trans IIM 49, p 587Google Scholar
  90. 90.
    Cheon JS, Lee CB, Lee BO, Raison JP, Mizuno T, Delage F, Carmack J (2009) Sodium fast reactor evaluation: Core materials. J Nucl Mater 392:324–330Google Scholar
  91. 91.
    Seran JL, Levy V, Dubuisson P, Gilbon D, Maillard A, Fissolo A, Touron H, Cauvin R, Chalony A, Le Boulbin E (1992) Behaviour under neutron irradiation of the 15-15Ti and EM10 steels used as standard materials of the Phenix fuel subassembly. In: Stoller RE, Kumar AS, Gelles DS (eds) Effects of radiation in materials: 15th international symposium, ASTM STP 1125. ASTM, pp 1209–1233Google Scholar
  92. 92.
    Toloczko MB, Gelles DS, Garner FA, Kurtz RJ, Abe K (2004) J Nucl Mater 329–333:352CrossRefGoogle Scholar
  93. 93.
    Chen J, Hoffelner W (2009) Irradiation creep of oxide dispersion strengthened (ODS) steels for advanced nuclear applications. J Nucl Mater 392:360–363CrossRefGoogle Scholar
  94. 94.
    Ukai S, Mizuta S, Kaito T, Okada H (2000) In-reactor creep rupture properties of 20 % CW modified 316 stainless steel. J Nucl Mater 278:320–327CrossRefGoogle Scholar
  95. 95.
    Kaito T, Ohtsuka S, Inoue M, Asayama T, Uwaba T, Mizuta S, Ukai S, Furukawa T, Ito C, Kagota E, Kitamura R, Aoyama T, Inoue T (2009) In-pile creep rupture properties of ODS ferritic steel claddings. J Nucl Mater 386–388:294–298CrossRefGoogle Scholar
  96. 96.
    Zhang Z, Liu J, He S, Zhang Z, Yu S (2002) Structural design of ceramic internals of HTR-10. Nucl Eng Des 218:123–136CrossRefGoogle Scholar
  97. 97.
    Greene SR, Holcomb DE, Gehin JC, Carbajo JJ, Cisneros AT, Corwin WR, Ilas D, Wilson DF, Varma VK, Bradley EC, Yoder GL (2010) SMAHTR—A concept for a small, modular advanced high temperature reactor. Proceedings of HTR 2010 Prague Czech Republic October 18–20 2010. Paper 205Google Scholar
  98. 98.
    DOE (2010) Fusion materials semi-annual progress report for the period ending December 31, 2009. DOE-ER-0313/47, Distribution, Categories, UC-423, -424, published February (2010)Google Scholar

Copyright information

© Springer-Verlag London Limited 2013

Authors and Affiliations

  1. 1.OberrohrdorfSwitzerland

Personalised recommendations