Femoropopliteal Endovascular Interventions

  • Melhem J. Sharafuddin
  • Parth B. Amin
  • Rachael M. Nicholson
  • Jamal J. Hoballah
Part of the New Techniques in Surgery Series book series (NEWTECHN, volume 6)


The treatment of peripheral arterial disease (PAD) has witnessed a remarkable evolution in the past two decades. While endovascular therapy has become well established as a primary treatment modality in aortoiliac occlusive disease, transcatheter treatment of infrainguinal occlusive disease remains controversial. The availability of a wide range of therapeutic options and devices applicable to infrainguinal interventions has resulted in a dramatic increase in the number of peripheral endovascular procedures over the past decade, with a staggering reported 979 % growth in peripheral vascular interventions reported since 1995. Despite this remarkable growth and increasing acceptance, many questions remain unanswered regarding the indications, choice of device/technique, clinical efficacy, long-term outcome, and cost-effectiveness of the available competing modalities. These decisions are also compounded by intense and often conflicting marketing efforts by the industry in the current competitive market. With the scarcity of randomized controlled trials, much of the published reports for newer endovascular technologies rely primarily on immediate angiographic outcomes and target limb revascularization (TLR) data. The following text is meant to provide an overview over current treatment options, technologies, and devices based on available evidence and the experience and opinions of the authors. The endovascular surgeon must be familiar with all the available treatments for PAD in order to continue to manage these patients amidst the increasingly complex health-care environment.


Angioplasty Vessel Stents CTO Cryoplasty 


  1. 1.
    Anderson PL, Gelijns A, Moskowitz A, et al. Understanding trends in inpatient surgical volume: vascular interventions, 1980–2000. J Vasc Surg. 2004;39(6):1200–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Dormandy J, Heeck L, Vig S. Peripheral arterial occlusive disease: clinical data for decision making. Introduction. Semin Vasc Surg. 1999;12(2):95.PubMedGoogle Scholar
  3. 3.
    Bhatt DL, Hirsch AT, Ringleb PA, Hacke W, Topol EJ. Reduction in the need for hospitalization for recurrent ischemic events and bleeding with clopidogrel instead of aspirin. CAPRIE investigators. Am Heart J. 2000;140(1):67–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Anand SS, Kundi A, Eikelboom J, Yusuf S. Low rates of preventive practices in patients with peripheral vascular disease. Can J Cardiol. 1999;15(11):1259–63.PubMedGoogle Scholar
  5. 5.
    Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D. The prevalence of peripheral arterial disease in a defined population. Circulation. 1985;71(3):510–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Kannel WB, McGee DL. Update on some epidemiologic features of intermittent claudication: the Framingham Study. J Am Geriatr Soc. 1985;33(1):13–8.PubMedGoogle Scholar
  7. 7.
    McDaniel MD, Cronenwett JL. Basic data related to the natural history of intermittent claudication. Ann Vasc Surg. 1989;3(3):273–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Second European Consensus Document on chronic critical leg ischemia. Eur J Vasc Surg. 1992;6(Suppl A):1–32.Google Scholar
  9. 9.
    Second European Consensus Document on chronic critical leg ischemia. Circulation. 1991;84(4 Suppl):IV1–26.Google Scholar
  10. 10.
    Long-term mortality and its predictors in patients with critical leg ischaemia. The I.C.A.I. Group (Gruppo di Studio dell’Ischemia Cronica Critica degli Arti Inferiori). The Study Group of Critical Chronic Ischemia of the Lower Extremities. Eur J Vasc Endovasc Surg. 1997;14(2):91–5.Google Scholar
  11. 11.
    Perkins JM, Collin J, Creasy TS, Fletcher EW, Morris PJ. Exercise training versus angioplasty for stable claudication. Long and medium term results of a prospective, randomised trial. Eur J Vasc Endovasc Surg. 1996;11(4):409–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Lundgren F, Dahllöf A-G, Lundholm K, Schersten T, Volkmann R. Intermittent claudication-surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann Surg. 1989;209(3):346–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Veith FJ, Gupta SK, Wengerter KR, Rivers SP, Bakal CW. Impact of nonoperative therapy on the clinical management of peripheral arterial disease. Circulation. 1991;83(2 Suppl):I137–42.PubMedGoogle Scholar
  14. 14.
    Hertzer NR. The natural history of peripheral vascular disease. Implications for its management. Circulation. 1991;83(2 Suppl):I12–9.PubMedGoogle Scholar
  15. 15.
    Bendermacher BLW, Willigendael EM, Teijink JAW, Prins MH. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. 2006;Issue 2.Google Scholar
  16. 16.
    Mazari FA, Gulati S, Rahman MN, et al. Early outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and combined therapy in intermittent claudication. Ann Vasc Surg. 2010;24(1):69–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Guidelines for percutaneous transluminal angioplasty. Standards of Practice Committee of the Society of Cardiovascular and Interventional Radiology. Radiology. 1990;177(3):619–26.Google Scholar
  18. 18.
    Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 guidelines for the management of patients With peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease. J Am Coll Cardiol. 2006;47(6):e1–192. doi: 10.1016/j.jacc.2006.02.024.CrossRefGoogle Scholar
  19. 19.
    Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(1, Suppl 1):S1.PubMedCrossRefGoogle Scholar
  20. 20.
    Allie DE, Hebert CJ, Patlola RR, Ingraldi A, Walker CM. Optimal vessel sizing in peripheral vascular interventions. Treating the peripheral and infrapopliteal arteries like the LAD. Endovasc Today. 2009:34–8.Google Scholar
  21. 21.
    Saxon RR, Coffman JM, Gooding JM, Natuzzi E, Ponec DJ. Long-term results of ePTFE stent-graft versus angioplasty in the femoropopliteal artery: single center experience from a prospective, randomized trial. J Vasc Interv Radiol. 2003;14(3):303–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu CC, Wen SC. Cutting balloon angioplasty for resistant venous stenoses of dialysis access: immediate and patency results. Catheter Cardiovasc Interv. 2008;71(2):250–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Schroeder S, Baumbach A, Haase KK, et al. Reduction of restenosis by vessel size adapted percutaneous transluminal coronary angioplasty using intravascular ultrasound. Am J Cardiol. 1999;83(6):875–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Allie DE, Patlola RR, Ingraldi A, Hebert CJ, Walker CM. The contemporary CLI toolbox. A close look at the available devices and techniques for treating today’s critical limb ischemia patients. Endovasc Today. 2009:37–50.Google Scholar
  25. 25.
    Diehm N, Shang A, Silvestro A, et al. Association of cardiovascular risk factors with pattern of lower limb atherosclerosis in 2659 patients undergoing angioplasty. Eur J Vasc Endovasc Surg. 2006;31(1):59–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Graziani L, Silvestro A, Bertone V, et al. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg. 2007;33(4):453–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Aboyans V, Lacroix P, Criqui MH. Large and small vessels atherosclerosis: similarities and differences. Prog Cardiovasc Dis. 2007;50(2):112–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Peripheral atherectomy with the rotablator: a multicenter report. The Collaborative Rotablator Atherectomy Group (CRAG). J Vasc Surg. 1994;19(3):509–15.Google Scholar
  29. 29.
    Rabellino M, Zander T, Baldi S, et al. Clinical follow-up in endovascular treatment for TASC C-D lesions in femoro-popliteal segment. Catheter Cardiovasc Interv. 2009;73(5):701–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Bolia A, Sayers RD, Thompson MM, Bell PR. Subintimal and intraluminal recanalisation of occluded crural arteries by percutaneous balloon angioplasty. Eur J Vasc Surg. 1994;8(2):214–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Sharafuddin MJ, Hoballah J, Kresowik T, Nicholson R, Sharp W. Impact of aggressive endovascular recanalization techniques on success rate in chronic total arterial occlusions (CTOs). Vasc Endovascular Surg. 2010;44:460–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Heenan SD, Vinnicombe SJ, Buckenham TM, Belli AM. Percutaneous transluminal angioplasty by a retrograde subintimal transpopliteal approach. Clin Radiol. 1994;49(11):824–7; discussion 827–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Noory E, Rastan A, Schwarzwalder U, et al. Retrograde transpopliteal recanalization of chronic superficial femoral artery occlusion after failed re-entry during antegrade subintimal angioplasty. J Endovasc Ther. 2009;16(5):619–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Sultan S, Hynes N. Five-year Irish trial of CLI patients with TASC II type C/D lesions undergoing subintimal angioplasty or bypass surgery based on plaque echolucency. J Endovasc Ther. 2009;16(3):270–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Bolia A, Bell PR. Femoropopliteal and crural artery recanalization using subintimal angioplasty. Semin Vasc Surg. 1995;8(3):253–64.PubMedGoogle Scholar
  36. 36.
    Met R, Van Lienden KP, Koelemay MJ, Bipat S, Legemate DA, Reekers JA. Subintimal angioplasty for peripheral arterial occlusive disease: a systematic review. Cardiovasc Intervent Radiol. 2008;31(4):687–97.PubMedCrossRefGoogle Scholar
  37. 37.
    Scott EC, Biuckians A, Light RE, Burgess J, Meier 3rd GH, Panneton JM. Subintimal angioplasty: our experience in the treatment of 506 infrainguinal arterial occlusions. J Vasc Surg. 2008;48(4):878–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Hayes PD, Chokkalingam A, Jones R, et al. Arterial perforation during infrainguinal lower limb angioplasty does not worsen outcome: results from 1409 patients. J Endovasc Ther. 2002;9(4):422–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Hausegger KA, Georgieva B, Portugaller H, Tauss J, Stark G. The outback catheter: a new device for true lumen re-entry after dissection during recanalization of arterial occlusions. Cardiovasc Intervent Radiol. 2004;27(1):26–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Wiesinger B, Steinkamp H, Konig C, Tepe G, Duda SH. Technical report and preliminary clinical data of a novel catheter for luminal re-entry after subintimal dissection. Invest Radiol. 2005;40(11):725–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Beschorner U, Sixt S, Schwarzwalder U, et al. Recanalization of chronic occlusions of the superficial femoral artery using the outback re-entry catheter: a single centre experience. Catheter Cardiovasc Interv. 2009;74(6):934–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Saketkhoo RR, Razavi MK, Padidar A, Kee ST, Sze DY, Dake MD. Percutaneous bypass: subintimal recanalization of peripheral occlusive disease with IVUS guided luminal re-entry. Tech Vasc Interv Radiol. 2004;7(1):23.PubMedCrossRefGoogle Scholar
  43. 43.
    Al-Ameri H, Shin V, Mayeda GS, et al. Peripheral chronic total occlusions treated with subintimal angioplasty and a true lumen re-entry device. J Invasive Cardiol. 2009;21(9):468–72.PubMedGoogle Scholar
  44. 44.
    Jacobs DL, Cox DE, Motaganahalli R. Crossing chronic total occlusions of the iliac and femoral-popliteal vessels and the use of true lumen reentry devices. Perspect Vasc Surg Endovasc Ther. 2006;18(1):31–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Boguszewski A, Torey J, Pai R, Kamalakannan D, Jefic D, Davis T. Intraluminal recanalization of SFA CTOs. Endovasc Today. 2010:33–8.Google Scholar
  46. 46.
    Heuser RR, Murarka S. The support-balloon technique for chronic total occlusion: successful recanalization of a 27-year- old occlusion. Vasc Dis Manag. 2010;7:e171–4.Google Scholar
  47. 47.
    Atmakuri SR, Lev EI, Alviar C, et al. Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol. 2006;47(3):515–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Kirvaitis RJ, Heuser RR, Das TS, et al. Usefulness of optical coherent reflectometry with guided radiofrequency energy to treat chronic total occlusions in peripheral arteries (the GRIP trial). Am J Cardiol. 2004;94(8):1081–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Ramaiah V. Endovascular infrainguinal revascularization: technical tips for atherectomy device selection and procedural success. Semin Vasc Surg. 2008;21:41–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Clark TW, Groffsky JL, Soulen MC. Predictors of long-term patency after femoropopliteal angioplasty: results from the STAR registry. J Vasc Interv Radiol. 2001;12(8):923–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Abularrage CJ, Conrad MF, Hackney LA, et al. Long-term outcomes of diabetic patients undergoing endovascular infrainguinal interventions. J Vasc Surg. 2010;52(2):314–22 e1–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Adar R, Critchfield GC, Eddy DM. A confidence profile analysis of the results of femoropopliteal percutaneous transluminal angioplasty in the treatment of lower-extremity ischemia. J Vasc Surg. 1989;10(1):57–67.PubMedGoogle Scholar
  53. 53.
    Johnston KW. Femoral and popliteal arteries: reanalysis of results of balloon angioplasty. Radiology. 1992;183(3):767–71.PubMedGoogle Scholar
  54. 54.
    Dorrucci V. Treatment of superficial femoral artery occlusive disease. J Cardiovasc Surg (Torino). 2004;45(3):193–201.Google Scholar
  55. 55.
    Taylor Jr LM, Porter JM. Clinical and anatomic considerations for surgery in femoropopliteal disease and the results of surgery. Circulation. 1991;83(2 Suppl):163–9.Google Scholar
  56. 56.
    Veith FJ, Gupta SK, Ascer E, et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg. 1986;3(1):104–14.PubMedGoogle Scholar
  57. 57.
    Bakal CW, Sprayregen S, Scheinbaum K, Cynamon J, Veith FJ. Percutaneous transluminal angioplasty of the infrapopliteal arteries: results in 53 patients. Am J Roentgenol. 1990;154(1):171–4.Google Scholar
  58. 58.
    Brown KT, Moore ED, Getrajdman GI, Saddekni S. Infrapopliteal angioplasty: long-term follow-up. J Vasc Interv Radiol. 1993;4(1):139–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Bull PG, Mendel H, Hold M, Schlegl A, Denck H. Distal popliteal and tibioperoneal transluminal angioplasty: long-term follow-up. J Vasc Interv Radiol. 1992;3(1):45–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Horvath W, Oertl M, Haidinger D. Percutaneous transluminal angioplasty of crural arteries. Radiology. 1990;177(2):565–9.PubMedGoogle Scholar
  61. 61.
    Matsi PJ, Manninen HI, Suhonen MT, Pirinen AE, Soimakallio S. Chronic critical lower-limb ischemia: prospective trial of angioplasty with 1–36 months follow-up. Radiology. 1993;188(2):381–7.PubMedGoogle Scholar
  62. 62.
    Schwarten DE. Clinical and anatomical considerations for nonoperative therapy in tibial disease and the results of angioplasty. Circulation. 1991;83(2 Suppl):I86–90.PubMedGoogle Scholar
  63. 63.
    Soder HK, Manninen HI, Jaakkola P, et al. Prospective trial of infrapopliteal artery balloon angioplasty for critical limb ischemia: angiographic and clinical results. J Vasc Interv Radiol. 2000;11(8):1021–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Bradbury AW, Adam DJ, Bell J, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) trial: a survival prediction model to facilitate clinical decision making. J Vasc Surg. 2010;51(5 Suppl):52S–68.PubMedCrossRefGoogle Scholar
  65. 65.
    Fogarty TJ, White RA. Biomaterials: considerations for endovascular devices. In: Back MR, editor. Peripheral endovascular interventions, vol. 4. New York: Springer; 2010. p. 141–63.CrossRefGoogle Scholar
  66. 66.
    Shammas NW. Optimal strategy in lower extremity peripheral percutaneous interventions: an interventionalist’s perspective. Vasc Dis Manag. 2009;6(2):36–40.Google Scholar
  67. 67.
    Shammas NW, Coiner D, Shammas G, Jerin M. Predictors of Provisional Stenting in Patients Undergoing Lower Extremity Arterial Interventions. Int J Angiol 2011;20:95–100.PubMedCrossRefGoogle Scholar
  68. 68.
    Diaz ML, Urtasun F, Barberena J, Aranzadi C, Guillen-Grima F, Bilbao JI. Cryoplasty versus conventional angioplasty in femoropopliteal arterial recanalization: 3-year analysis of reintervention-free survival by treatment received. Cardiovasc Intervent Radiol. 2011;34:911–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Leon MB, Teirstein PS, Moses JW, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med. 2001;344(4):250–6. doi: 10.1056/NEJM200101253440402.PubMedCrossRefGoogle Scholar
  70. 70.
    Tripuraneni P, Giap H, Jani S. Endovascular brachytherapy for peripheral vascular disease. Semin Radiat Oncol. 1999;9(2):190.PubMedCrossRefGoogle Scholar
  71. 71.
    Diamond DA, Vesely TM. The role of radiation therapy in the management of vascular restenosis. Part II. Radiation techniques and results. J Vasc Intervent Radiol. 1998;9(3):389.CrossRefGoogle Scholar
  72. 72.
    Waksman R, Laird JR, Jurkovitz CT, et al. Intravascular radiation therapy after balloon angioplasty of narrowed femoropopliteal arteries to prevent restenosis: results of the PARIS feasibility clinical trial. J Vasc Intervent Radiol. 2001;12(8):915.CrossRefGoogle Scholar
  73. 73.
    Schillinger M, Minar E. Advances in vascular brachy therapy over the last 10 years: focus on femoropopliteal applications. J Endovasc Ther. 2004;11(Suppl II):II-180–91. doi: 10.1583/04-1298.1.CrossRefGoogle Scholar
  74. 74.
    Wolfram RM, Budinsky AC, Pokrajac B, Pötter R, Minar E. Vascular brachytherapy with 192Ir after femoropopliteal stent implantation in high-risk patients: twelve-month follow-up results from the Vienna-5 trial1. Radiology. 2005;236(1):343–51. doi: 10.1148/radiol.2361040696.PubMedCrossRefGoogle Scholar
  75. 75.
    Wohlgemuth WA, Leissner G, Wengenmair H, Bohndorf K, Kirchhof K. Endovascular brachytherapy in the femoropopliteal segment using 192Ir and 188Re. Cardiovasc Intervent Radiol. 2008;31(4):698.PubMedCrossRefGoogle Scholar
  76. 76.
    Gage AA, Fazekas G, Riley Jr EE. Freezing injury to large blood vessels in dogs. With comments on the effect of experimental freezing of bile ducts. Surgery. 1967;61(5):748–54.PubMedGoogle Scholar
  77. 77.
    Laird J, Jaff MR, Biamino G, et al. Cryoplasty for the treatment of femoropopliteal arterial disease: results of a prospective, multicenter registry. J Vasc Interv Radiol. 2005;16(8):1067–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Samson RH, Showalter DP, Michael Lepore J, Nair DG, Merigliano K. CryoPlasty therapy of the superficial femoral and popliteal arteries: a reappraisal after 44 months’ experience. J Vasc Surg. 2008;48(3):634.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmieder GC, Carroll M, Panneton JM. Poor outcomes with cryoplasty for lower extremity arterial occlusive disease. J Vasc Surg. 2010;52(2):362–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Spiliopoulos S, Katsanos K, Karnabatidis D, et al. Cryoplasty versus conventional balloon angioplasty of the femoropopliteal artery in diabetic patients: long-term results from a prospective randomized single-center controlled trial. Cardiovasc Intervent Radiol. 2010;33(5):929.PubMedCrossRefGoogle Scholar
  81. 81.
    Engelke C, Sandhu C, Morgan RA, Belli A-M. Using 6-mm cutting balloon angioplasty in patients with resistant peripheral artery stenosis: preliminary results. Am J Roentgenol. 2002;179(3):619–23.Google Scholar
  82. 82.
    Ansel GM, Sample NS, Botti CF, et al. Cutting balloon angioplasty of the popliteal and infrapopliteal vessels for symptomatic limb ischemia. Catheter Cardiovasc Interv. 2003;61:1–4.CrossRefGoogle Scholar
  83. 83.
    Amighi J, Schillinger M, Dick P, et al. De novo superficial femoropopliteal artery lesions: peripheral cutting balloon angioplasty and restenosis rates randomized controlled trial1. Radiology. 2008;247(1):267–72. doi: 10.1148/radiol.2471070749.PubMedCrossRefGoogle Scholar
  84. 84.
    Vikram R, Ross RA, Bhat R, et al. Cutting balloon angioplasty versus standard balloon angioplasty for failing infra-inguinal vein grafts: comparative study of short- and mid-term primary patency rates. Cardiovasc Intervent Radiol. 2007;30(4):607.PubMedCrossRefGoogle Scholar
  85. 85.
    Scheinert D, Peeters P, Bosiers M, O’Sullivan G, Sultan S, Gershony G. Results of the multicenter first-in-man study of a novel scoring balloon catheter for the treatment of infra-popliteal peripheral arterial disease. Catheter Cardiovasc Interv. 2007;70(7):1034–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Tepe G, Zeller T, Albrecht T, et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med. 2008;358:689–99. doi: 10.1056/NEJMoa0706356.PubMedCrossRefGoogle Scholar
  87. 87.
    Werk M, Langner S, Reinkensmeier B, et al. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation. 2008;118(13):1358–65. doi: 10.1161/CIRCULATIONAHA.107.735985.PubMedCrossRefGoogle Scholar
  88. 88.
    Allie D, Berens E, Bramucci E, et al. Plaque excision in the peripheral vasculature. Endovasc Today. 2004;(Suppl 1):1–11.Google Scholar
  89. 89.
    Ramaiah V, Gammon R, Kiesz S, et al. Midterm outcomes from the TALON registry: treating peripherals with SilverHawk: outcomes collection. J Endovasc Ther. 2006;13(5):592–602.PubMedCrossRefGoogle Scholar
  90. 90.
    Zeller T, Rastan A, Schwarzwalder U, et al. Midterm results after atherectomy-assisted angioplasty of below-knee arteries with use of the Silverhawk device. J Vasc Interv Radiol. 2004;15(12):1391–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Kandzari DE, Kiesz RS, Allie D, et al. Procedural and clinical outcomes with catheter-based plaque excision in critical limb ischemia. J Endovasc Ther. 2006;13(1):12–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Sixt S, Rastan A, Beschorner U, et al. Acute and long-term outcome of Silverhawk assisted atherectomy for femoro-popliteal lesions according the TASC II classification: a single-center experience. Vasa. 2010;39(3):229–36.PubMedGoogle Scholar
  93. 93.
    Chung SW, Sharafuddin MJ, Chigurupati R, Hoballah JJ. Midterm patency following atherectomy for infrainguinal occlusive disease: a word of caution. Ann Vasc Surg. 2008;22(3):358–65.PubMedCrossRefGoogle Scholar
  94. 94.
    Yancey AE, Minion DJ, Rodriguez C, Patterson DE, Endean ED. Peripheral atherectomy in TransAtlantic InterSociety Consensus type C femoropopliteal lesions for limb salvage. J Vasc Surg. 2006;44(3):503.PubMedCrossRefGoogle Scholar
  95. 95.
    Suri R, Wholey MH, Postoak D, Hagino RT, Toursarkissian B. Distal embolic protection during femoropopliteal atherectomy. Catheter Cardiovasc Interv. 2006;67(3):417–22.PubMedCrossRefGoogle Scholar
  96. 96.
    Safian RD, Niazi K, Runyon JP, et al. Orbital atherectomy for infrapopliteal disease: device concept and outcome data for the OASIS trial. Catheter Cardiovasc Interv. 2009;73(3):406–12.PubMedGoogle Scholar
  97. 97.
    Belli AM, Cumberland DC, Procter AE, Welsh CL. Follow-up of conventional angioplasty versus laser thermal angioplasty for total femoropopliteal artery occlusions: results of a randomized trial. J Vasc Interv Radiol. 1991;2(4):485–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Huppert PE, Duda SH, Helber U, Karsch KR, Claussen CD. Comparison of pulsed laser-assisted angioplasty and balloon angioplasty in femoropopliteal artery occlusions. Radiology. 1992;184(2):363–7.PubMedGoogle Scholar
  99. 99.
    Scheinert D, Laird Jr JR, Schroder M, Steinkamp H, Balzer JO, Biamino G. Excimer laser-assisted recanalization of long, chronic superficial femoral artery occlusions. J Endovasc Ther. 2001;8(2):156–66.PubMedCrossRefGoogle Scholar
  100. 100.
    Laird JR. Limitations of percutaneous transluminal angioplasty and stenting for the treatment of disease of the superficial femoral and popliteal arteries. J Endovasc Ther. 2006;13 Suppl 2:II30–40.PubMedGoogle Scholar
  101. 101.
    Serino F, Cao Y, Renzi C, et al. Excimer laser ablation in the treatment of total chronic obstructions in critical limb ischaemia in diabetic patients. Sustained efficacy of plaque recanalisation in mid-term results. Eur J Vasc Endovasc Surg. 2010;39(2):234–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Dave RM, Patlola R, Kollmeyer K, et al. Excimer laser recanalization of femoropopliteal lesions and 1-year patency: results of the CELLO registry. J Endovasc Ther. 2009;16:665–75. doi: 10.1583/09-2781.1.PubMedCrossRefGoogle Scholar
  103. 103.
    Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg. 2006;31(6):627–36.PubMedCrossRefGoogle Scholar
  104. 104.
    Gray BH, Sullivan TM, Childs MB, Young JR, Olin JW. High incidence of restenosis/reocclusion of stents in the percutaneous treatment of long-segment superficial femoral artery disease after suboptimal angioplasty. J Vasc Surg. 1997;25(1):74–83.PubMedCrossRefGoogle Scholar
  105. 105.
    Saxon RR, Coffman JM, Gooding JM, Ponec DJ. Long-term patency and clinical outcome of the Viabahn stent-graft for femoropopliteal artery obstructions. J Vasc Interv Radiol. 2007;18(11):1341–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Duda SH, Bosiers M, Lammer J, et al. Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol. 2005;16(3):331–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Shah VM, Mintz GS, Apple S, Weissman NJ. Background incidence of late malapposition after bare-metal stent implantation. Circulation. 2002;106(14):1753–5. doi: 10.1161/01.CIR.0000035239.90657.B1.PubMedCrossRefGoogle Scholar
  108. 108.
    Moses JW, Carlier S, Moussa I. Lesion preparation prior to stenting. Rev Cardiovasc Med. 2004;5 Suppl 2:S16–21.PubMedGoogle Scholar
  109. 109.
    Sabeti S, Schillinger M, Amighi J, et al. Primary patency of femoropopliteal arteries treated with nitinol versus stainless steel self-expanding stents: propensity score-adjusted analysis. Radiology. 2004;232(2):516–21.PubMedCrossRefGoogle Scholar
  110. 110.
    Mewissen MW. Self-expanding nitinol stents in the femoropopliteal segment: technique and mid-term results. Tech Vasc Interv Radiol. 2004;7(1):2–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Schillinger M, Sabeti S, Loewe C, et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N Engl J Med. 2006;354(18):1879–88.PubMedCrossRefGoogle Scholar
  112. 112.
    Krankenberg H, Schluter M, Steinkamp HJ, et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST). Circulation. 2007;116(3):285–92. doi: 10.1161/CIRCULATIONAHA.107.689141.PubMedCrossRefGoogle Scholar
  113. 113.
    Laird JR, Katzen BT, Scheinert D, et al. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery/clinical perspective. Circ Cardiovasc Interv. 2010;3(3):267–76. doi: 10.1161/CIRCINTERVENTIONS.109.903468.PubMedCrossRefGoogle Scholar
  114. 114.
    Dick P, Wallner H, Sabeti S, et al. Balloon angioplasty versus stenting with nitinol stents in intermediate length superficial femoral artery lesions. Catheter Cardiovasc Interv. 2009;74(7):1090–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Scheinert D, Scheinert S, Sax J, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. 2005;45(2):312–5. doi: 10.1016/j.jacc.2004.11.026.PubMedCrossRefGoogle Scholar
  116. 116.
    Bosiers M, Torsello G, Gissler HM, et al. Nitinol stent implantation in long superficial femoral artery lesions: 12-month results of the DURABILITY I study. J Endovasc Ther. 2009;16(3):261–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Rits J, van Herwaarden JA, Jahrome AK, Krievins D, Moll FL. The incidence of arterial stent fractures with exclusion of coronary, aortic, and non-arterial settings. Eur J Vasc Endovasc Surg. 2008;36(3):339–45.PubMedCrossRefGoogle Scholar
  118. 118.
    Cragg AH, Dake MD. Percutaneous femoropopliteal graft placement. J Vasc Interv Radiol. 1993;4(4):455–63.PubMedCrossRefGoogle Scholar
  119. 119.
    Lammer J, Dake MD, Bleyn J, et al. Peripheral arterial obstruction: prospective study of treatment with a transluminally placed self-expanding stent-graft. Radiology. 2000;217(1):95–104.PubMedGoogle Scholar
  120. 120.
    Deutschmann HA, Schedlbauer P, Berczi V, Portugaller H, Tauss J, Hausegger KA. Placement of Hemobahn stent-grafts in femoropopliteal arteries: early experience and midterm results in 18 patients. J Vasc Interv Radiol. 2001;12(8):943–50.PubMedCrossRefGoogle Scholar
  121. 121.
    Kedora J, Hohmann S, Garrett W, Munschaur C, Theune B, Gable D. Randomized comparison of percutaneous Viabahn stent grafts vs. prosthetic femoral-popliteal bypass in the treatment of superficial femoral arterial occlusive disease. J Vasc Surg. 2007;45(1):10–6; discussion 16.PubMedCrossRefGoogle Scholar
  122. 122.
    Saxon RR, Dake MD, Volgelzang RL, Katzen BT, Becker GJ. Randomized, multicenter study comparing expanded polytetrafluoroethylene-covered endoprosthesis placement with percutaneous transluminal angioplasty in the treatment of superficial femoral artery occlusive disease. J Vasc Interv Radiol. 2008;19(6):823–32.PubMedCrossRefGoogle Scholar
  123. 123.
    Duda SH, Pusich B, Richter G, et al. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: six-month results. Circulation. 2002;106(12):1505–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Duda SH, Bosiers M, Lammer J, et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J Endovasc Ther. 2006;13(6):701–10.PubMedCrossRefGoogle Scholar
  125. 125.
    Dake MD, Scheinert D, Tepe G, et al. Nitinol Stents With Polymer-Free Paclitaxel Coating for Lesions in the Superficial Femoral and Popliteal Arteries Above the Knee: Twelve-Month Safety and Effectiveness Results From the Zilver PTX Single-Arm Clinical Study. Journal of Endovascular Therapy 2011;18: 613–623.PubMedCrossRefGoogle Scholar
  126. 126.
    Biamino G, Schmidt A, Scheinert D. Treatment of SFA lesions with PLLA biodegradable stents: results of the PERSEUS study. J Endovasc Ther. 2005;12(Suppl (Abstracts: International Congress XVIII on Endovascular Interventions)): 1–5.Google Scholar
  127. 127.
    Bosiers M, Peeters P, D’Archambeau O, et al. AMS INSIGHT – absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. Cardiovasc Intervent Radiol. 2009;32(3):424–35.PubMedCrossRefGoogle Scholar
  128. 128.
    Clagett GP, Sobel M, Jackson MR, Lip GYH, Tangelder M, Verhaeghe R. Antithrombotic therapy in peripheral arterial occlusive disease. The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126 Suppl 3:609S–26.PubMedCrossRefGoogle Scholar
  129. 129.
    Allie DE, Hebert CJ, Lirtzman MD, et al. Combined glycoprotein IIb/IIIa and direct thrombin inhibition with eptifibatide and bivalirudin in the interventional treatment. Vasc Dis Manag. 2005; 2(6).Google Scholar
  130. 130.
    Mueller MR, Salat A, Stangl P, et al. Variable platelet response to low-dose ASA and the risk of limb deterioration in patients submitted to peripheral arterial angioplasty. Thromb Haemost. 1997;78(3):1003–7.PubMedGoogle Scholar
  131. 131.
    A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet. 1996;348(9038):1329–39.Google Scholar
  132. 132.
    Efficacy of oral anticoagulants compared with aspirin after infrainguinal bypass surgery (The Dutch Bypass Oral Anticoagulants or Aspirin Study): a randomised trial. Lancet. 2000;355(9201):346–51.Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Melhem J. Sharafuddin
    • 1
  • Parth B. Amin
    • 1
  • Rachael M. Nicholson
    • 1
  • Jamal J. Hoballah
    • 2
    • 1
  1. 1.Division of Vascular Surgery, Department of SurgeryUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  2. 2.Division of Vascular Surgery, Department of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon

Personalised recommendations