Skip to main content

Effects of Intermittent Hypoxic Training on Exercise Tolerance in Patients with Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:
  • 932 Accesses

Abstract

Intermittent hypoxic training (IHT) has been suggested to increase exercise tolerance in patients with cardiovascular disease by enhancing stress resistance and/or improving oxygen delivery. This is also assumed to be true for patients with chronic obstructive pulmonary disease (COPD). This chapter discusses findings, derived from randomized controlled studies, on the effects of IHT on exercise tolerance in patients suffering from mild COPD. Three weeks of IHT increased total haemoglobin mass (+4% vs. 0%, P < 0.05), total exercise time (+9.7% vs. 0%, P < 0.05) and the exercise time to the anaerobic threshold (+13% vs. −7.8%, P < 0.05) compared to controls. Changes in the total exercise time were positively related to the changes in total haemoglobin mass (r = 0.59, P < 0.05), and changes in the time to the anaerobic threshold were positively related to the changes in the lung diffusion capacity for carbon monoxide (DLCO) (r = 0.48, P < 0.05). Increases in vagal activity after IHT were related to the reduced values of heart rate and blood lactate concentration observed during submaximal exercise (6-min walk test), and changes in respiratory pattern after IHT were related to the lower ventilatory equivalents for oxygen and carbon dioxide (V E/VO2 and V E/VCO2) at the anaerobic threshold determined by incremental cycle ergometry. In conclusion, IHT can improve exercise tolerance in patients with mild COPD. IHT is considered as repeated stress training and subsequent adaptations resulting in corrections of impaired DLCO, improved ventilatory efficiency, enhancement of total haemoglobin mass and changes of the autonomic balance to higher vagal and lower sympathetic activity. Thus, IHT may be a valuable tool to complement the known beneficial effects of exercise training in patients with COPD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AT:

Anaerobic threshold

CO2-et:

End-tidal CO2

COPD:

Chronic obstructive pulmonary disease

DLCO:

Lung diffusion capacity for carbon monoxide

FEV1:

Forced expiratory volume in 1 s

FEVC:

Forced expiratory vital capacity

FiO2 :

Inspiratory fraction of oxygen

HCVR:

Hypercapnic ventilatory response

HIF:

Hypoxia-inducible factor

HR:

Heart rate

HVR:

Hypoxic ventilatory response

IH:

Intermittent hypoxia

IHT:

Intermittent hypoxic training

NO:

Nitric oxide

OSA:

Obstructive sleep apnoea

RPE:

Ratings of perceived exertion

SaO2 :

Arterial oxygen saturation

SD:

Standard deviation

V E :

Minute ventilation

VO2 :

Oxygen uptake

V E/VO2 :

Ventilatory equivalent for oxygen

V E/VCO2 :

Ventilatory equivalent for carbon dioxide

References

  1. Mannino DM, Braman S. The epidemiology and economics of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2007;4:502–6.

    Article  PubMed  Google Scholar 

  2. Andreas S, Anker SD, Scanlon PD, et al. Neurohumoral activation as a link to systemic manifestations of chronic lung disease. Chest. 2005;128:3618–24.

    Article  PubMed  Google Scholar 

  3. O’Donnell DE, Webb KA. The major limitation to exercise performance in COPD is dynamic hyperinflation. J Appl Physiol. 2008;105:753–5.

    Article  PubMed  Google Scholar 

  4. Belfer MH, Reardon JZ. Improving exercise tolerance and quality of life in patients with chronic obstructive pulmonary disease. J Am Osteopath Assoc. 2009;109:268–78.

    PubMed  Google Scholar 

  5. Casaburi R. Limitation to exercise tolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:409–10.

    Article  PubMed  Google Scholar 

  6. Burtscher M, Haider T, Domej W, et al. Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respir Physiol Neurobiol. 2009;165:97–103.

    Article  PubMed  CAS  Google Scholar 

  7. Haider T, Casucci G, Linser T, et al. Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J Hypertens. 2009;27:1648–54.

    Article  PubMed  CAS  Google Scholar 

  8. Neubauer JA. Physiological and pathophysiological responses to intermittent hypoxia. J Appl Physiol. 2001;90:1593–9.

    PubMed  CAS  Google Scholar 

  9. Lavie L. Oxidative stress – a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis. 2009;51:303–12.

    Article  PubMed  CAS  Google Scholar 

  10. O’Donnell CP. Metabolic consequences of intermittent hypoxia. Adv Exp Med Biol. 2007;618:41–9.

    Article  PubMed  Google Scholar 

  11. Meerson FZ, Ustinova EE, Orlova EH. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol. 1987;10:783–9.

    Article  PubMed  CAS  Google Scholar 

  12. Tkatchouk EN, Gorbatchenkov AA, Kolchinskaya AZ, et al. Adaptation to interval hypoxia with the purpose of prophylaxis and treatment. Hypoxia Med J. 1994;11:308–28.

    Google Scholar 

  13. Meerson FZ, Malyshev YI, Zamotrinsky AV. Differences in adaptive stabilisation of structures in response to stress and hypoxia relate with the accumulation of hsp70 isoforms. Mol Cell Biochem. 1992;111:87–95.

    Article  PubMed  CAS  Google Scholar 

  14. Berton DC, Barbosa PB, Takara LS, et al. Bronchodilators accelerate the dynamics of muscle O2 delivery and utilisation during exercise in COPD. Thorax. 2010;65:588–93.

    Article  PubMed  Google Scholar 

  15. Sin DD, Man SF. Skeletal muscle weakness, reduced exercise tolerance, and COPD: is systemic inflammation the missing link? Thorax. 2006;61:1–3.

    Article  PubMed  CAS  Google Scholar 

  16. Anthonisen NR, Connett JE, Enright PL, et al. Hospitalizations and mortality in the Lung Health Study. Am J Respir Crit Care Med. 2002;166:333–9.

    Article  PubMed  Google Scholar 

  17. Sin DD, Wu L, Anderson JA, et al. Inhaled corticosteroids and mortality in chronic obstructive pulmonary disease. Thorax. 2005;60:992–7.

    Article  PubMed  CAS  Google Scholar 

  18. Yende S, Waterer GW, Tolley EA, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax. 2006;61:10–6.

    Article  PubMed  CAS  Google Scholar 

  19. Mador MJ, Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res. 2001;2:216–24.

    Article  PubMed  CAS  Google Scholar 

  20. Cooper CB. Airflow obstruction and exercise. Respir Med. 2009;103:325–34.

    Article  PubMed  Google Scholar 

  21. Vogtel M, Michels A. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol. 2010;10:206–13.

    Article  PubMed  Google Scholar 

  22. Borukaeva IK. Intermittent hypoxic training in the sanatorium and spa treatment for patients with chronic obstructive pulmonary disease. Vopr Kurortol Fizioter Lech Fiz Kult. 2007;5:21–4 [In Russian].

    PubMed  Google Scholar 

  23. Alexandrov OV, Struchkov PV, Vinitskaya RS, et al. Responses of the cardiorespiratory system to a hypoxic exposure in the course of hypoxic therapy in patients with chronic obstructive lung diseases. Hypoxia Med J. 1997;1:18–22.

    Google Scholar 

  24. Ehrenbourg I, Kondrykinskaya I. The efficiency of interval hypoxic training in therapy of chronic obstructive pulmonary diseases. Hypoxia Med J. 1993;1:17–8.

    Google Scholar 

  25. Serebrovskaya TV. Intermittent hypoxia research in the former Soviet Union and the Commonwealth of Independent States: history and review of the concept and selected applications. High Alt Med Biol. 2002;3:205–21.

    Article  PubMed  Google Scholar 

  26. Falch D, Stromme SB. Pulmonary blood volume and interventricular circulation time in physically trained and untrained subjects. Eur J Appl Physiol Occup Physiol. 1979;40:211–8.

    Article  PubMed  CAS  Google Scholar 

  27. Manukhina EB, Downey HF, Mallet R. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia. Exp Biol Med. 2006;231:343–65.

    CAS  Google Scholar 

  28. Clini E, Bianchi L, Vitacca M, et al. Exhaled nitric oxide and exercise in stable COPD patients. Chest. 2000;117:702–7.

    Article  PubMed  CAS  Google Scholar 

  29. Girgis RE, Champion HC, Diette GB, et al. Decreased exhaled nitric oxide in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2005;172:352–7.

    Article  PubMed  Google Scholar 

  30. Crawford JH, Isbell TS, Huang Z, et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood. 2006;107:566–74.

    Article  PubMed  CAS  Google Scholar 

  31. Calbet JA, Lundby C, Koskolou M, et al. Importance of haemoglobin concentration to exercise: acute manipulations. Respir Physiol Neurobiol. 2006;151:132–40.

    Article  PubMed  CAS  Google Scholar 

  32. Neya M, Enoki T, Kumai Y, et al. The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass. J Appl Physiol. 2007;103:828–34.

    Article  PubMed  CAS  Google Scholar 

  33. Frede S, Berchner-Pfannschmidt U, Fandrey J. Regulation of hypoxia-inducible factors during inflammation. Methods Enzymol. 2007;435:405–19.

    PubMed  CAS  Google Scholar 

  34. Zhuang J, Zhou Z. Protective effects of intermittent hypoxic adaptation on myocardium and its mechanisms. Biol Sig Recept. 1999;8:316–22.

    Article  CAS  Google Scholar 

  35. Böning D, Klarholz C, Himmelsbach B, et al. Extracellular bicarbonate and non-bicarbonate buffering against lactic acid during and after exercise. Eur J Appl Physiol. 2007;100:457–67.

    Article  PubMed  Google Scholar 

  36. Bernardi L. Interval hypoxic training. Adv Exp Med Biol. 2001;502:377–99.

    PubMed  CAS  Google Scholar 

  37. Bernardi L, Passino C, Serebrovskaya Z, et al. Respiratory and cardiovascular adaptations to progressive hypoxia; effect of interval hypoxic training. Eur Heart J. 2001;22:879–86.

    Article  PubMed  CAS  Google Scholar 

  38. Burtscher M, Pachinger O, Ehrenbourg I, et al. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol. 2004;96:247–54.

    Article  PubMed  Google Scholar 

  39. Milic-Emili J. Expiratory flow limitation: Roger S. Mitchell lecture. Chest. 2000;117:219S–23.

    Article  PubMed  CAS  Google Scholar 

  40. Kokkinos P, Myers J, Kokkinos JP, et al. Exercise capacity and mortality in black and white men. Circulation. 2008;117:614–22.

    Article  PubMed  Google Scholar 

  41. Cote CG, Pinto-Plata V, Kasprzyk K, et al. The 6-min walk distance, peak oxygen uptake, and mortality in COPD. Chest. 2007;132:1778–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Burtscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Burtscher, M. (2012). Effects of Intermittent Hypoxic Training on Exercise Tolerance in Patients with Chronic Obstructive Pulmonary Disease. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics