Skip to main content

Metabolic Cardiovascular Risk Factors

  • Chapter
  • First Online:
  • 1199 Accesses

Abstract

Endurance exercise is widely recommended in the treatment paradigm of various hyperlipoproteinemias for its putative anti-atherogenic action on circulating lipids and apolipoproteins (Fig. 7.1) and to improve cardiorespiratory fitness, which may lower atherosclerotic risk independent of lipids and other risk factors [1]. Support for this notion, however, is largely based on research in normocholesterolemic subjects. Training studies in hypercholesterolemic subjects are rare, and lipid results are inconclusive [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS. Effects of training and a single session of exercise on lipids and apolipoproteins in hypercholesterolemic men. J Appl Physiol. 1997;83:2019–28.

    PubMed  CAS  Google Scholar 

  2. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med. 2001;31:1033–62.

    Article  PubMed  CAS  Google Scholar 

  3. Lahoz C, Mostaza JM. Atherosclerosis as a systemic disease. Rev Esp Cardiol. 2007;60:184–95.

    Article  PubMed  Google Scholar 

  4. King AC, Haskell WL, Young DR, Oka RK, Stefanick ML. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91:2596–604.

    Article  PubMed  CAS  Google Scholar 

  5. Baigent C, Blackwell L, Emberson J, et al. Cholesterol Treatment Trialists’ (CTT) Collaboration, Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  PubMed  CAS  Google Scholar 

  6. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.

    Article  PubMed  CAS  Google Scholar 

  7. Marrugat J, Elosua R, Covas MI, Molina L, Rubies-Prat J. Amount and intensity of physical activity, physical fitness, and serum lipids in men. The MARATHOM Investigators. Am J Epidemiol. 1996;143:562–9.

    Article  PubMed  CAS  Google Scholar 

  8. Phillips WT, Kiratli BJ, Sarkarati M, et al. Effect of spinal cord injury on the heart and cardiovascular fitness. Curr Probl Cardiol. 1998;23:641–716.

    Article  PubMed  CAS  Google Scholar 

  9. Stefanick ML, Mackey S, Sheehan M, et al. Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol. N Engl J Med. 1998;339:12–20.

    Article  PubMed  CAS  Google Scholar 

  10. Rotkis HB, Cote R, Coly E, Wilmore JH. Relationship between high density lipoprotein cholesterol and weekly running mileage. J Cardiac Rehabil. 1982;2:109–12.

    Google Scholar 

  11. Petridou A, Lazaridou D, Mougios V. Lipidemic profile of athletes and non-athletes with similar body fat. Int J Sport Nutr Exerc Metab. 2005;15:425–32.

    PubMed  Google Scholar 

  12. Nikkilä EA, Taskinen MR, Rehunen S, Harkonen M. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism. 1978;27:1661–7.

    Article  PubMed  Google Scholar 

  13. Taylor PA, Ward A. Women, high-density lipoprotein cholesterol, and exercise. Arch Intern Med. 1993;153:1178–84.

    Article  PubMed  CAS  Google Scholar 

  14. Hernan Jimenez O, Ramírez-Velez R. Strength training improves insulin sensitivity and plasma lipid ­levels without altering body composition in overweight and obese subjects. Endocrinol Nutr. 2011;58:169–74.

    Article  PubMed  CAS  Google Scholar 

  15. Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev Med. 2009;49:473–5.

    Article  PubMed  CAS  Google Scholar 

  16. Tucker LA, Silvester LJ. Strength training and hypercholesterolemia: an epidemiologic study of 8499 employed men. Am J Health Promot. 1996;11:35–41.

    Article  PubMed  CAS  Google Scholar 

  17. Kohl III HW, Gordon NF, Scott CB, Vaandrager H, Blair SN. Musculoskeletal strength and serum lipid levels in men and women. Med Sci Sports Exerc. 1992;24:1080–7.

    PubMed  Google Scholar 

  18. Shoup EE, Durstine JL. Acute circuit weight lifting and its effects on postheparin lipoprotein lipase activity. Med Sci Sports Exerc. 1991;23:4–9.

    Google Scholar 

  19. Boyden TW, Pamenter RW, Going SB, et al. Resistance exercise training is associated with decreases in serum low-density lipoprotein cholesterol levels in premenopausal women. Arch Intern Med. 1993;153:97–100.

    Article  PubMed  CAS  Google Scholar 

  20. Halverstadt A, Phares DA, Wilund KR, Goldberg AP, Hagberg JM. Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism. 2007;56:444–50.

    Article  PubMed  CAS  Google Scholar 

  21. Sagiv M, Goldbourt U. Influence of physical work on high density lipoprotein cholesterol: implications for the risk of coronary heart disease. Int J Sports Med. 1994;15:261–6.

    Article  PubMed  CAS  Google Scholar 

  22. Thompson PD, Tsongalis GJ, Seip RL, et al. Apolipoprotein E genotype and changes in serum lipids and maximal oxygen uptake with exercise training. Metabolism. 2004;53:193–202.

    Article  PubMed  CAS  Google Scholar 

  23. Thorland WG, Gilliam TB. Comparison of serum lipids between habitually high and low active preadolescent males. Med Sci Sports Exerc. 1981;13:316–21.

    PubMed  CAS  Google Scholar 

  24. Angelopoulos TJ, Sivo SA, Kyriazis GA. Do age and baseline LDL cholesterol levels determine the effect of regular exercise on plasma lipoprotein cholesterol and apolipoprotein B levels? Eur J Appl Physiol. 2007;101:621–8.

    Article  PubMed  CAS  Google Scholar 

  25. Kelley GA, Kelley KS, Franklin B. Aerobic exercise and lipids and lipoproteins in patients with cardiovascular disease: a meta-analysis of randomized controlled trials. J Cardiopulm Rehabil. 2006;26:131–44.

    Article  PubMed  Google Scholar 

  26. Stein RA, Michielli DW, Glanz MD, Sardy H, Cohen A, Goldberg N, Brown CD. Effects of different exercise training intensities on lipoprotein cholesterol fractions in healthy middle-aged men. Am Heart J. 1990;119:277–83.

    Article  PubMed  CAS  Google Scholar 

  27. Kodama S, Tanaka S, Saito K, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med. 2007;167:999–1008.

    Article  PubMed  CAS  Google Scholar 

  28. Eapen DJ, Kalra GL, Rifai L, Eapen CA, Merchant N, Khan BV. Raising HDL cholesterol in women. Int J Womens Health. 2010;1:181–91.

    PubMed  Google Scholar 

  29. Joseph LJ, Davey SL, Evans WJ, Campbell WW. Differential effect of resistance training on the body composition and lipoprotein-lipid profile in older men and women. Metabolism. 1999;48:1474–80.

    Article  PubMed  CAS  Google Scholar 

  30. Cauley JA, Kriska AM, LaPorte RE, Sandler RB, Pambianco GA. Two year randomized exercise trail in older women: effects on HDL-cholesterol. Atherosclerosis. 1987;66:247–58.

    Article  PubMed  CAS  Google Scholar 

  31. Stranska Z, Matoulek M, Vilikus Z, Svacina S, Stransky P. Aerobic exercise has beneficial impact on atherogenic index of plasma in sedentary overweigh and obese women. Neuro Endocrinol Lett. 2011;32:102–8.

    PubMed  Google Scholar 

  32. Lokey EA, Tran ZV. Effects of exercise training on serum lipid and lipoprotein concentrations in women: a meta-analysis. Int J Sports Med. 1989;10:419–29.

    Article  Google Scholar 

  33. Goldberg AP, Busby-Whitehead MJ, Katzel LI, Krauss RM, Lumpkin M, Hagberg JM. Cardiovascular fitness, body composition, and lipoprotein lipid metabolism in older men. J Gerontol A Biol Sci Med Sci. 2000;55:M342–9.

    Article  PubMed  CAS  Google Scholar 

  34. Corvilain B. Lipoprotein metabolism. Rev Med Brux. 1997;18:3–9.

    PubMed  CAS  Google Scholar 

  35. BenOunis O, Elloumi M, Makni E, Zouhal H, Amri M, Tabka Z, Lac G. Exercise improves the ApoB/ApoA-I ratio, a marker of the metabolic syndrome in obese children. Acta Paediatr. 2010;99:1679–85.

    Article  CAS  Google Scholar 

  36. Morris R, Digenio A, Padayachee GN, Kinnear B. The effect of a 6-month cardiac rehabilitation programme on serum lipoproteins and apoproteins A1 and B and lipoprotein a. S Afr Med J. 1993;83:315–8.

    PubMed  CAS  Google Scholar 

  37. Kiens B, Lithell H. Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. J Clin Invest. 1983;83:558–64.

    Article  Google Scholar 

  38. Lavie CJ, Milani RV. Effects of cardiac rehabilitation, exercise training, and weight reduction on exercise capacity, coronary risk factors, behavioral characteristics, and quality of life in obese coronary patients. Am J Cardiol. 1997;79:397–401.

    Article  PubMed  CAS  Google Scholar 

  39. Lavie CJ, Ventura HO, Messerli FH. Left ventricular hypertrophy its relationship to obesity and hypertension. Postgrad Med. 1992;91:131–43.

    PubMed  CAS  Google Scholar 

  40. Bader DS, Maguire TE, Spahn CM, O’Malley CJ, Balady GJ. Clinical profile and outcomes of obese patients in cardiac rehabilitation stratified according to National Heart, Lung, and Blood Institute criteria. J Cardiopulm Rehabil. 2001;21:210–7.

    Article  PubMed  CAS  Google Scholar 

  41. Meires J, Christie C. Contemporary approaches to adult obesity treatment. Nurse Pract. 2011;36:37–46.

    Article  PubMed  Google Scholar 

  42. Hu G, Tuomilehto J, Silventoinen K, Barengo N, Jousilahti P. Joint effects of physical activity, body mass index, waist circumference and waist-to-hip ratio with the risk of cardiovascular disease among middle-aged Finnish men and women. Eur Heart J. 2004;25:2212–9.

    Article  PubMed  Google Scholar 

  43. Giannopoulou I, Ploutz-Snyder LL, Carhart R, Weinstock RS, Fernhall B, Goulopoulou S, Kanaley JA. Exercise is required for visceral fat loss in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2005;90:1511–8.

    Article  PubMed  CAS  Google Scholar 

  44. Windecker S, Allemann Y, Billinger M, et al. Effect of endurance training on coronary artery size and function in healthy men: an invasive follow up study. AJP Heart. 2002;282:H2216–23.

    CAS  Google Scholar 

  45. Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, Ravussin E. Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab. 2007;92:865–72.

    Article  PubMed  CAS  Google Scholar 

  46. Helge JW, Wulff B, Kiens B. Impact of a fat-rich diet on endurance in man: role of the dietary period. Med Sci Sports Exerc. 1998;30:456–61.

    Article  PubMed  CAS  Google Scholar 

  47. Poirier P, Després JP. Exercise in weight management of obesity. Cardiol Clin. 2001;19:459–70.

    Article  PubMed  CAS  Google Scholar 

  48. Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002;34:92–7.

    PubMed  Google Scholar 

  49. Ibrahimi A, Bonen A, Blinn WE, et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem. 1999;274:26761–6.

    Article  PubMed  CAS  Google Scholar 

  50. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, Cameron-Smith D. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2002;283:E66–72.

    PubMed  CAS  Google Scholar 

  51. Kiens B, Kristiansen S, Jensen P, Richter EA, Turcotte LP. Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem Biophys Res Commun. 1997;231:463–5.

    Article  PubMed  CAS  Google Scholar 

  52. Bonen A, Dyck DJ, Ibrahimi A, Abumrad NA. Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36. Am J Physiol Endocrinol Metab. 1999;276:E642–9.

    CAS  Google Scholar 

  53. Berthon PM, Howlett RA, Heigenhauser GJF, Spriet LL. Human skeletal muscle carnitine palmitoyltransferase I activity determined in isolated intact mitochondria. J Appl Physiol. 1998;85:148–53.

    PubMed  CAS  Google Scholar 

  54. Spina RJ, Chi MM-Y, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO. Mitochondrial enzymes increase in muscle in response to 7–10 days of cycle exercise. J Appl Physiol. 1996;80:2250–4.

    PubMed  CAS  Google Scholar 

  55. Baar K, Blough E, Dineen B, Esser K. Transcriptional regulation in response to exercise. Exerc Sport Sci Rev. 1999;27:333–79.

    Article  PubMed  CAS  Google Scholar 

  56. Kraniou Y, Cameron-Smith D, Misso M, Collier G, Hargreaves M. Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J Appl Physiol. 2000;88:794–6.

    Article  PubMed  CAS  Google Scholar 

  57. Vuori IM. Dose–response of physical activity and low back pain, osteoarthritis, and osteoporosis. Med Sci Sports Exerc. 2001;33(6 suppl):S551–86.

    PubMed  CAS  Google Scholar 

  58. Stone MH, Fleck SJ, Triplett NT, Kraemer WJ. Health- and performance-related potential of resistance training. Sports Med. 1991;11:210–31.

    Article  PubMed  CAS  Google Scholar 

  59. Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34:663–79.

    Article  PubMed  Google Scholar 

  60. Kraemer WJ, Volek SJ, Clark KL, et al. Physiological adaptations to a weight-loss dietary regimen and exercise programs in women. J Appl Physiol. 1997;83:270–9.

    PubMed  CAS  Google Scholar 

  61. Buse JB, Ginsberg HN, Bakris GL, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus. A scientific statement from the American Heart Association and the American Diabetes Association. Circulation. 2007;115:114–26.

    Article  PubMed  Google Scholar 

  62. Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, et al. The rising prevalence of diabetes and impaired glucose tolerance: the Australian diabetes, obesity and lifestyle study. Diabetes Care. 2002;25:829–34.

    Article  PubMed  Google Scholar 

  63. Evans WJ. Effects of exercise on body composition and functional capacity of the elderly. J Gerontol A Biol Sci Med Sci. 1995;50A:147–50.

    Article  Google Scholar 

  64. Lindle R, Metter E, Lynch N, et al. Age and gender comparisons of muscle strength in 654 women and me aged 20–93. J Appl Physiol. 1997;83:1581–7.

    PubMed  CAS  Google Scholar 

  65. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol. 1991;71:644–50.

    PubMed  CAS  Google Scholar 

  66. Ingelsson E, Sullivan LM, Murabito JM, et al. Prevalence and prognostic impact of subclinical cardiovascular disease in individual with the metabolic syndrome and diabetes. Diabetes. 2007;56:1718–26.

    Article  PubMed  CAS  Google Scholar 

  67. Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in US adults: the Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care. 1998;21:518–24.

    Article  PubMed  CAS  Google Scholar 

  68. McCabe L, Zhang J, Raehtz S. Understanding the skeletal pathology of type 1 and 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr. 2011;21:187–206.

    Article  PubMed  CAS  Google Scholar 

  69. Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol. 2010;299:F14–25.

    Article  PubMed  CAS  Google Scholar 

  70. Khaw KT, Wareham N, Luben R, et al. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European prospective investigation of cancer and nutrition (EPICNorfolk). BMJ. 2001;322:1–6.

    Article  Google Scholar 

  71. Stewart KJ. Exercise training and the cardiovascular consequences of type q diabetes and hypertension: possible mechanisms for improving cardiovascular health. JAMA. 2002;288:1622–31.

    Article  PubMed  Google Scholar 

  72. Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review. Int J Sports Med. 2000;21:1–12.

    Article  PubMed  CAS  Google Scholar 

  73. Thompson PD, David Buchner D, Piña IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. A statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107:3109–16.

    Article  PubMed  Google Scholar 

  74. Ivy JL. Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Med. 1997;24:321–36.

    Article  PubMed  CAS  Google Scholar 

  75. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  PubMed  CAS  Google Scholar 

  76. Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006;174:801–9.

    Article  PubMed  Google Scholar 

  77. American Diabetes Association. Diabetes mellitus and exercise (Position Statement). Diabetes Care. 2000;23 Suppl 1:S50–4.

    Google Scholar 

  78. Holloszy JO, Hansen PA. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol. 1996;128:99–193.

    PubMed  CAS  Google Scholar 

  79. Braith RW, Stewart KJ. Resistance exercise training its role in the prevention of cardiovascular disease. Circulation. 2006;113:2642–50.

    Article  PubMed  Google Scholar 

  80. Ibanez J, Izquierdo M, Arguelles I, et al. Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care. 2005;28:662–7.

    Article  PubMed  Google Scholar 

  81. Albright A, Franz M, Hornsby G, Kriska A, Marrero D, Ullrich I, Verity LS. American College of Sports Medicine position stand: exercise and type 2 diabetes. Med Sci Sports Exerc. 2000;32:1345–60.

    Article  PubMed  CAS  Google Scholar 

  82. Pereira LO, Lancha Jr AH. Effect of insulin and contraction up on glucose transport in skeletal muscle. Prog Biophys Mol Biol. 2004;84:1–27.

    Article  PubMed  CAS  Google Scholar 

  83. Manley S. Haemoglobin A1c: a marker for complications of type 2 diabetes: the experience from the UK Prospective Diabetes Study (UKPDS). Clin Chem Lab Med. 2003;41:1182–90.

    Article  PubMed  CAS  Google Scholar 

  84. Balducci S, Zanuso S, Nicolucci A, et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial: the Italian Diabetes and Exercise Study (IDES). Arch Intern Med. 2010;170:1794–803.

    Article  PubMed  Google Scholar 

  85. Colberg SR, Albright AL, Blissmer BJ, et al. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2010;42:2282–303.

    Article  PubMed  Google Scholar 

  86. Ploug T, Ralston E. Anatomy of glucose transporters in skeletal muscle. Effects of insulin and contractions. Adv Exp Med Biol. 1998;441:17–26.

    PubMed  CAS  Google Scholar 

  87. Ryder JW, Kawano Y, Galuska D, et al. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J. 1999;13:2246–56.

    PubMed  CAS  Google Scholar 

  88. Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology. 2005;20:260–70.

    Article  PubMed  CAS  Google Scholar 

  89. Richter EA. Glucose utilization. In: Handbook of physiology. Exercise: regulation and integration of multiple systems. Bethesda: American Physiological Society; 1996. p. 913–51.

    Google Scholar 

  90. Kraczek EJK, Hirshman MF, Goodyear LJ, Winder WW. 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999;48:1667–71.

    Article  Google Scholar 

  91. Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48:1192–7.

    Article  PubMed  CAS  Google Scholar 

  92. Miura T, Suzuki W, Ishihara E, Arai I, Ishida H, Seino Y, Tanigawa K. Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: a new genetic animal model of type 2 diabetes. Eur J Endocrinol. 2001;145:785–90.

    Article  PubMed  CAS  Google Scholar 

  93. Seibek M, Vestergaard H, Burchardt H, et al. Insulin resistance and maximal oxygen uptake. Clin Cardiol. 2003;26:515–20.

    Article  Google Scholar 

  94. Regensteiner JG, Bauer TA, Reusch JEB, et al. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. Physiology. 1998;85:310–7.

    CAS  Google Scholar 

  95. Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20:537–44.

    Article  PubMed  CAS  Google Scholar 

  96. Kamalesh M, Feigenbaum H, Sawada S. Challenge of identifying patients with diabetes mellitus who are at low risk for coronary events by use of cardiac stress imaging. Am Heart J. 2004;147:561–3.

    Article  PubMed  Google Scholar 

  97. Durak EP, Jovanovic-Peterson L, Peterson CM. Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type I diabetic men. Diabetes Care. 1990;13:1039–43.

    Article  PubMed  CAS  Google Scholar 

  98. Sigal RJ, Kenny GP, Boulé NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:357–69.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sagiv Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Sagiv, M.S. (2012). Metabolic Cardiovascular Risk Factors. In: Exercise Cardiopulmonary Function in Cardiac Patients. Springer, London. https://doi.org/10.1007/978-1-4471-2888-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2888-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2887-8

  • Online ISBN: 978-1-4471-2888-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics