Advertisement

Dynamic and Steady-State Analysis of Switching Power Converters Made Easy: Complementarity Formalism

  • Gianluca Angelone
  • Francesco Vasca
  • Luigi Iannelli
  • Kanat Camlibel
Part of the Advances in Industrial Control book series (AIC)

Abstract

Power electronics converters represent an interesting class of switched nonlinear circuits. Switchings of electronic devices can be classified as external if forced by directly manipulable control variables, and internal if determined by state dependent conditions. The presence of internal switchings makes it difficult to know a priori the sequence of modes and also open loop steady-state behaviours are difficult to obtain. In this chapter, it is shown how linear complementarity systems can be used to model the behaviour of a wide class of power converters. The complementarity framework is suitable for modelling piecewise-linear characteristics of diodes and controlled electronic switches. The combination of such models with a state-space representation of the circuit allows obtaining a model of the power converter which is valid for any operating mode. The discretization of this model allows the formulation of a static complementarity problem whose solution provides the steady-state oscillation of the converter, either in open or closed-loop. Throughout the chapter, the usefulness of the complementarity formalism for the analysis of power converters is shown by considering three challenging examples: a DC–DC voltage-mode pulse-width modulated boost converter, a resonant converter and a switched capacitors converter are used as examples.

References

  1. 1.
    Acary, V., Bonnefon, O., Brogliato, B.: Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(7), 1042–1055 (2010) CrossRefGoogle Scholar
  2. 2.
    Allmeling, J.H., Hammer, J.H.: PLECS—piecewise linear electrical circuit simulation for Simulink. In: Proc. of the IEEE International Conference on Power Electronics and Drive System, Hong Kong, pp. 355–360 (1999) Google Scholar
  3. 3.
    Almér, S., Jönsson, U.: Harmonic analysis of pulse-width modulated systems. Automatica 45(4), 851–862 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Aprille, T.J. Jr., Trick, T.N.: Steady-state analysis of nonlinear circuits with periodic inputs. Proc. IEEE 60(1), 108–114 (1972). doi: 10.1109/PROC.1972.8563 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bedrosian, D.G., Vlach, J.: An accelerated steady-state method for networks with internally controlled switches. IEEE Trans. Circuits Syst. I 39(7), 520–530 (1992) CrossRefGoogle Scholar
  6. 6.
    Brambilla, A., Gruosso, G., Redaelli, M.A., Gajani, G.S., Caviglia, D.D.: Improved small-signal analysis for circuits working in periodic steady state. IEEE Trans. Circuits Syst. I 57(2), 427–437 (2010) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Camlibel, M.K., Heemels, W.P.M.H., der Schaft, A.J.v., Schumacher, J.M.: Switched networks and complementarity. IEEE Trans. Circuits Syst. I 50(8), 1036–1046 (2003) CrossRefGoogle Scholar
  8. 8.
    Camlibel, M.K., Iannelli, L., Vasca, F.: Passivity and complementarity. GRACE Technical Report 352, University of Sannio (2006). Available at www.grace.ing.unisannio.it
  9. 9.
    Chua, L.O.: Nonlinear circuits. IEEE Trans. Circuits Syst. 31(1), 69–87 (1984) MATHCrossRefGoogle Scholar
  10. 10.
    Chung, H.S.H., Ioinovici, A., Zhang, J.: Describing functions of power electronics circuits using progressive analysis of circuit waveforms. IEEE Trans. Circuits Syst. I 47(7), 1026–1037 (2000) CrossRefGoogle Scholar
  11. 11.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992) MATHGoogle Scholar
  12. 12.
    del Águila-López, F., Palà-Schönwälder, P., Molina-Gaudó, P., Mediano-Heredia, A.: A discrete-time technique for the steady-state analysis of nonlinear class-E amplifiers. IEEE Trans. Circuits Syst. I 54(6), 1358–1366 (2007) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Desoer, C.A., Kuh, E.S.: Basic Circuit Theory. McGraw-Hill, New York (1969) Google Scholar
  14. 14.
    Femia, N., Spagnuolo, G., Vitelli, M.: Unified analysis of synchronous commutations in switching converters. IEEE Trans. Circuits Syst. I 49(8), 939–954 (2002) CrossRefGoogle Scholar
  15. 15.
    Foster, M.P., Gould, C.R., Gilbert, A.J., Stone, D.A., Bingham, C.M.: Analysis of CLL voltage–output resonant converters using describing functions. IEEE Trans. Power Electron. 23(4), 1772–1781 (2008) CrossRefGoogle Scholar
  16. 16.
    Frasca, R., Camlibel, M.K., Goknar, I.C., Iannelli, L., Vasca, F.: Linear passive networks with ideal switches: Consistent initial conditions and state discontinuities. IEEE Trans. Circuits Syst. I 57(12), 3138–3151 (2010) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Glocker, C.: Models of non-smooth switches in electrical systems. Int. J. Circuit Theory Appl. 33(3), 205–234 (2005) MATHCrossRefGoogle Scholar
  18. 18.
    Iannelli, L., Vasca, F., Camlibel, M.K.: Complementarity and passivity for piecewise linear feedback systems. In: Proc. of the IEEE Conference on Decision and Control, San Diego, California, USA, pp. 4212–4217 (2006) CrossRefGoogle Scholar
  19. 19.
    Iannelli, L., Vasca, F., Angelone, G.: Computation of steady-state oscillations in power converters through complementarity. IEEE Trans. Circuits Syst. I 58(6), 1421–1432 (2011) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ioinovici, A.: Switched-capacitor power electronics circuits. IEEE Circuits Syst. Mag. 1(3), 37–42 (2001) CrossRefGoogle Scholar
  21. 21.
    Kassakian, J.G., Schlecht, M.F., Verghese, G.C.: Principles of Power Electronics. Prentice Hall, Reading (2001) Google Scholar
  22. 22.
    Kato, T., Tachibana, W.: Periodic steady-state analysis of an autonomous power electronic system by a modified shooting method. IEEE Trans. Power Electron. 13(3), 522–527 (1998) CrossRefGoogle Scholar
  23. 23.
    Kato, T., Inoue, K., Ogoshi, J.: Efficient multi-rate steady-state analysis of a power electronic system by the envelope following method. In: Proc. of the IEEE Power Electronics Specialists Conference, Orlando, Florida, USA, pp. 888–893 (2007) CrossRefGoogle Scholar
  24. 24.
    Kato, T., Inoue, K., Ogoshi, J., Kumiki, Y.: Efficient steady-state simulation of a power electronic circuit by parallel processing. In: Proc. of the IEEE Power Electronics Specialists Conference, Rhodes, Greece, pp. 2103–2108 (2008) CrossRefGoogle Scholar
  25. 25.
    Li, D., Tymerski, R.: Comparison of simulation algorithms for accelerated determination of periodic steady state of switched networks. IEEE Trans. Ind. Electron. 47(6), 1278–1285 (2000) CrossRefGoogle Scholar
  26. 26.
    Maffezzoni, P., Codecasa, L., D’Amore, D.: Event-driven time-domain simulation of closed-loop switched circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(11), 2413–2426 (2006) CrossRefGoogle Scholar
  27. 27.
    Maksimovic, D.: Automated steady-state analysis of switching power converters using a general-purpose simulation tool. In: Proc. of the IEEE Power Electronics Specialists Conference, St. Louis, Missouri (USA), pp. 1352–1358 (1997) Google Scholar
  28. 28.
    Mino, K., Rico, J., Barrera, E., Madrigal, M.: Component connection model for the automated steady state analysis of power electronic systems. In: Proc. of the IEEE Power and Energy Society General Meeting, Minneapolis, Minnesota, USA, pp. 1–7 (2010) Google Scholar
  29. 29.
    Mohan, N., Undeland, T.M., Robbins, W.P.: Power Electronics: Converters, Applications, and Design, 3rd edn. Wiley, New York (2002) Google Scholar
  30. 30.
    Möller, M., Glocker, C.: Non-smooth modelling of electrical systems using the flux approach. Nonlinear Dyn. 50(1–2), 273–295 (2007) MATHCrossRefGoogle Scholar
  31. 31.
    Qiu, S.S., Filanovsky, I.M.: Harmonic analysis of pwm converters. IEEE Trans. Circuits Syst. I 47(9), 1340–1349 (2000) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Stern, T.E.: Piecewise-linear network theory. Technical Report 315, MIT Research Laboratory of Electronics, Cambridge, Massachusetts, USA (1956) Google Scholar
  33. 33.
    Tam, K.C., Wong, S.C., Tse, C.K.: An improved wavelet approach for finding steady-state waveforms of power electronics circuits using discrete convolution. IEEE Trans. Circuits Syst. II 52(10), 690–694 (2005) CrossRefGoogle Scholar
  34. 34.
    Tourkhani, F., Viarouge, P.: A method for determining the minimum dimension of the steady-state equation of a switching network. IEEE Trans. Circuits Syst. I 48(2), 250–255 (2001) CrossRefGoogle Scholar
  35. 35.
    Tourkhani, F., Viarouge, P., Meynard, T.A., Gagnon, R.: Power converter steady-state computation using the projected Lagrangian method. In: Proc. of the IEEE Power Electronics Specialists Conference, St. Louis, Missouri, USA, pp. 1359–1363 (1997) Google Scholar
  36. 36.
    Tourkhani, F., Allain, M., Viarouge, P.: Steady state analysis of switching converters without predefined switching period. In: Proc. of the Canadian Conference on Electrical and Computer Engineering, Vancouver, Canada, pp. 706–708 (2007) CrossRefGoogle Scholar
  37. 37.
    Tymerski, R.: Frequency analysis of time-interval-modulated switched networks. IEEE Trans. Power Electron. 6(2), 287–295 (1991) CrossRefGoogle Scholar
  38. 38.
    Vasca, F., Iannelli, L., Camlibel, M.K., Frasca, R.: A new perspective for modeling power electronics: complementarity framework. IEEE Trans. Power Electron. 24(2), 456–468 (2009) CrossRefGoogle Scholar
  39. 39.
    Vasca, F., Angelone, G., Iannelli, L.: Linear complementarity models for steady-state analysis of pulse-width modulated switched electronic systems. In: IEEE Mediterranean Conference on Control and Automation, Corfu, Greece, pp. 400–405 (2011) Google Scholar
  40. 40.
    Wong, B.K.H., Chung, H.: Dual-loop iteration algorithm for steady-state determination of current-programmed DC/DC switching converters. IEEE Trans. Circuits Syst. I 46(4), 521–526 (1999) CrossRefGoogle Scholar
  41. 41.
    Wong, B.K.H., Chung, H.S.H., Lee, S.T.S.: Computation of the cycle state-variable sensitivity matrix of PWM DC/DC converters and its applications. IEEE Trans. Circuits Syst. I 47(10), 1542–1548 (2000) CrossRefGoogle Scholar
  42. 42.
    Yang, B., Lee, F.C., Zhang, A.J., Huang, G.: LLC resonant converter for front end DC/DC conversion. In: Proc. of the IEEE Applied Power Electronics Conference and Exposition, Dallas, Texas, USA, pp. 1108–1112 (2002) Google Scholar
  43. 43.
    Yuan, F., Opal, A.: Computer methods for switched circuits. IEEE Trans. Circuits Syst. I 50(8), 1013–1024 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Gianluca Angelone
    • 1
  • Francesco Vasca
    • 1
  • Luigi Iannelli
    • 1
  • Kanat Camlibel
    • 2
  1. 1.Department of EngineeringUniversity of SannioBeneventoItaly
  2. 2.Institute of Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations