Skip to main content

Nuclear Medicine in Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer: A Comprehensive Perspective

Abstract

The field of nuclear medicine exploits the properties of unstable, radioactive nuclei. The stability of a nucleus is dependent upon the relative number of protons and neutrons within the nucleus. Nuclei with too many neutrons or protons are unstable and decay to a stable state with the emission of radioactive energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomez P, et al. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int. 2004;94(3):299–302.

    Article  PubMed  Google Scholar 

  2. Han M, et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003;169(2):517–23.

    Article  PubMed  Google Scholar 

  3. Heidenreich A, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71. Epub 2010 Oct 28.

    Article  PubMed  Google Scholar 

  4. Even-Sapir E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  5. Choueiri MB, et al. The central role of osteoblasts in the metastasis of prostate cancer. Cancer Metastasis Rev. 2006;25(4):601–9.

    Article  PubMed  Google Scholar 

  6. Scott LJ, et al. Interactions of human prostatic epithelial cells with bone marrow endothelium: binding and invasion. Br J Cancer. 2001;84(10):1417–23.

    Article  PubMed  CAS  Google Scholar 

  7. Beheshti M, Langsteger W, Fogelman I. Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39(6):396–407.

    Article  PubMed  Google Scholar 

  8. Goya M, et al. Prostate-specific antigen induces apoptosis of osteoclast precursors: potential role in osteoblastic bone metastases of prostate cancer. Prostate. 2006;66(15):1573–84.

    Article  PubMed  CAS  Google Scholar 

  9. Mease RC. Radionuclide based imaging of prostate cancer. Curr Top Med Chem. 2010;10(16):1600–16.

    Article  PubMed  CAS  Google Scholar 

  10. Cook GJR. Clinical nuclear medicine. 4th ed. London: Hodder Arnold; 2006. p. xxi. 915 p., [64] p. of plates.

    Google Scholar 

  11. Schmid H, Oberpenning F, Pummer K. Diagnosis and staging of prostatic carcinoma: what is really necessary? Urol Int. 1999;63(1):57–61.

    Article  PubMed  CAS  Google Scholar 

  12. Kattan MW, et al. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90(10):766–71.

    Article  PubMed  CAS  Google Scholar 

  13. Miller PD, Eardley I, Kirby RS. Prostate specific antigen and bone scan correlation in the staging and monitoring of patients with prostatic cancer. Br J Urol. 1992;70(3):295–8.

    Article  PubMed  CAS  Google Scholar 

  14. Cher ML, et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol. 1998;160(4):1387–91.

    Article  PubMed  CAS  Google Scholar 

  15. Oesterling JE, et al. The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA. 1993;269(1):57–60.

    Article  PubMed  CAS  Google Scholar 

  16. Lin K, et al. The value of a baseline bone scan in patients with newly diagnosed prostate cancer. Clin Nucl Med. 1999;24(8):579–82.

    Article  PubMed  CAS  Google Scholar 

  17. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171(6 Pt 1):2122–7.

    Article  PubMed  Google Scholar 

  18. Dotan ZA, et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J Clin Oncol. 2005;23(9):1962–8.

    Article  PubMed  Google Scholar 

  19. Oyen WJ, Witjes JA, Corstens FH. Nuclear medicine techniques for the diagnosis and therapy of prostate carcinoma. Eur Urol. 2001;40(3):294–9.

    Article  PubMed  CAS  Google Scholar 

  20. Imbriaco M, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the bone scan index. Clin Cancer Res. 1998;4(7):1765–72.

    PubMed  CAS  Google Scholar 

  21. Tumeh SS, Beadle G, Kaplan WD. Clinical significance of solitary rib lesions in patients with extraskeletal malignancy. J Nucl Med. 1985;26(10):1140–3.

    PubMed  CAS  Google Scholar 

  22. Jacobson AF, et al. Bone scans with one or two new abnormalities in cancer patients with no known metastases: frequency and serial scintigraphic behavior of benign and malignant lesions. Radiology. 1990;175(1):229–32.

    PubMed  CAS  Google Scholar 

  23. Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49(12):2031–41.

    Article  PubMed  Google Scholar 

  24. Constable AR, Cranage RW. Recognition of the superscan in prostatic bone scintigraphy. Br J Radiol. 1981;54(638):122–5.

    Article  PubMed  CAS  Google Scholar 

  25. Cook GJ, Fogelman I. The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med. 2001;31(3):206–11.

    Article  PubMed  CAS  Google Scholar 

  26. Gates GF. SPECT bone scanning of the spine. Semin Nucl Med. 1998;28(1):78–94.

    Article  PubMed  CAS  Google Scholar 

  27. Ghanem N, et al. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol. 2005;55(1):41–55.

    Article  PubMed  CAS  Google Scholar 

  28. Han LJ, et al. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25(6):635–8.

    Article  PubMed  CAS  Google Scholar 

  29. Savelli G, et al. The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res. 2000;20(2B):115–20.

    Google Scholar 

  30. Savelli G, et al. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45(1):27–37.

    PubMed  CAS  Google Scholar 

  31. Texter Jr JH, Neal CE. The role of monoclonal antibody in the management of prostate adenocarcinoma. J Urol. 1998;160(6 Pt 2):2393–5.

    PubMed  Google Scholar 

  32. Hinkle GH, et al. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer. 1998;83(4):739–47.

    Article  PubMed  CAS  Google Scholar 

  33. Jadvar H, Parker JA. Clinical PET and PET/CT. London: Springer; 2005. p. x. 279 p.

    Google Scholar 

  34. Jadvar H. FDG PET in prostate cancer. PET Clin. 2009;4(2):155–61.

    Article  PubMed  Google Scholar 

  35. Hricak H, et al. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243(1):28–53.

    Article  PubMed  Google Scholar 

  36. Kao PF, Chou YH, Lai CW. Diffuse FDG uptake in acute prostatitis. Clin Nucl Med. 2008;33(4):308–10.

    Article  PubMed  Google Scholar 

  37. Shreve PD, et al. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 1996;199(3):751–6.

    PubMed  CAS  Google Scholar 

  38. Pouliot F, Johnson M, Wu L. Non-invasive molecular imaging of prostate cancer lymph node metastasis. Trends Mol Med. 2009;15(6):254–62.

    Article  PubMed  CAS  Google Scholar 

  39. Ryzhkova DV, et al. Positron emission tomography with 18-fluorine deoxyglucose in the diagnosis and assessment of prostate cancer. Vopr Onkol. 2008;54(4):512–5.

    PubMed  CAS  Google Scholar 

  40. Bouchelouche K, et al. PET/CT imaging and radioimmunotherapy of prostate cancer. Semin Nucl Med. 2011;41(1):29–44.

    Article  PubMed  Google Scholar 

  41. Jadvar H, et al. [F-18]-fluorodeoxyglucose PET-CT of the normal prostate gland. Ann Nucl Med. 2008;22(9):787–93.

    Article  PubMed  Google Scholar 

  42. Hofer C, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol. 1999;36(1):31–5.

    Article  PubMed  CAS  Google Scholar 

  43. Han EJ, et al. Significance of incidental focal uptake in prostate on 18-fluoro-2-deoxyglucose positron emission tomography CT images. Br J Radiol. 2010;83(995):915–20.

    Article  PubMed  CAS  Google Scholar 

  44. Monet A, Merino B, Lupo R. Interesting image. Incidental diagnosis of prostate cancer by F-18 FDG PET/CT. Clin Nucl Med. 2010;35(1):34–5.

    Article  PubMed  Google Scholar 

  45. Hung GU, et al. Synchronous prostate cancer incidentally detected by FDG-PET/CT in staging a patient with newly diagnosed nasopharyngeal cancer. Clin Nucl Med. 2009;34(12):962–3.

    Article  PubMed  Google Scholar 

  46. Jana S, Blaufox MD. Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med. 2006;36(1):51–72.

    Article  PubMed  Google Scholar 

  47. Oyama N, et al. Fluorodeoxyglucose positron emission tomography in diagnosis of untreated prostate cancer. Nippon Rinsho. 1998;56(8):2052–5.

    PubMed  CAS  Google Scholar 

  48. Oyama N, et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol. 2002;4(1):99–104.

    Article  PubMed  Google Scholar 

  49. Kanamaru H, et al. Evaluation of prostate cancer using FDG-PET. Hinyokika Kiyo. 2000;46(11):851–3.

    PubMed  CAS  Google Scholar 

  50. Sung J, et al. Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int. 2003;92(1):24–7.

    Article  PubMed  CAS  Google Scholar 

  51. Meirelles GS, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16(24):6093–9.

    Article  PubMed  CAS  Google Scholar 

  52. Fogelman I, et al. Positron emission tomography and bone metastases. Semin Nucl Med. 2005;35(2):135–42.

    Article  PubMed  Google Scholar 

  53. Tiwari BP, et al. Complimentary role of FDG-PET imaging and skeletal scintigraphy in the evaluation of patients of prostate carcinoma. Indian J Cancer. 2010;47(4):385–90.

    Article  PubMed  CAS  Google Scholar 

  54. Jadvar H, Pinski JK, Conti PS. FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep. 2003;10(5):1485–8.

    PubMed  Google Scholar 

  55. Morris MJ, et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology. 2002;59(6):913–8.

    Article  PubMed  Google Scholar 

  56. Daly PF, Cohen JS. Magnetic resonance spectroscopy of tumors and potential in vivo clinical applications: a review. Cancer Res. 1989;49(4):770–9.

    PubMed  CAS  Google Scholar 

  57. Narayan P, et al. Characterization of prostate cancer, benign prostatic hyperplasia and normal prostates using transrectal 31phosphorus magnetic resonance spectroscopy: a preliminary report. J Urol. 1991;146(1):66–74.

    PubMed  CAS  Google Scholar 

  58. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39(6):990–5.

    PubMed  CAS  Google Scholar 

  59. Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12(7):413–39.

    Article  PubMed  CAS  Google Scholar 

  60. Breeuwsma AJ, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging. 2005;32(6):668–73.

    Article  PubMed  Google Scholar 

  61. Zheng QH, Gardner TA, Raikwar S, et al. [11C]choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem. 2004;12(11):2887–93.

    Google Scholar 

  62. Picchio M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol. 2003;169(4):1337–40.

    Article  PubMed  CAS  Google Scholar 

  63. de Jong IJ, et al. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med. 2003;44(3):331–5.

    PubMed  Google Scholar 

  64. Kotzerke J, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med. 2000;27(9):1415–9.

    Article  PubMed  CAS  Google Scholar 

  65. Yamaguchi T, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging. 2005;32(7):742–8.

    Article  PubMed  CAS  Google Scholar 

  66. Reske SN, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47(8):1249–54.

    PubMed  CAS  Google Scholar 

  67. Krause BJ, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(1):18–23.

    Article  PubMed  CAS  Google Scholar 

  68. Giovacchini G, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37(2):301–9.

    Article  PubMed  Google Scholar 

  69. Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2008;35(1):9–17.

    Article  PubMed  Google Scholar 

  70. Rinnab L, et al. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int. 2007;100(4):786–93.

    Article  PubMed  CAS  Google Scholar 

  71. Scattoni V, et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol. 2007;52(2):423–9.

    Article  PubMed  Google Scholar 

  72. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43(2):187–99.

    PubMed  CAS  Google Scholar 

  73. DeGrado TR, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42(12):1805–14.

    PubMed  CAS  Google Scholar 

  74. Schillaci O, et al. 18F-Choline PET/CT physiological distribution and pitfalls in image interpretation: experience in 80 patients with prostate cancer. Nucl Med Commun. 2010;31(1):39–45.

    Article  PubMed  CAS  Google Scholar 

  75. Pelosi E, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med. 2008;113(6):895–904.

    Article  PubMed  CAS  Google Scholar 

  76. Cimitan M, et al. [18F]Fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33(12):1387–98.

    Article  PubMed  Google Scholar 

  77. Reske SN. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35(9):1740–1.

    Article  PubMed  Google Scholar 

  78. Yoshimoto M, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28(2):117–22.

    Article  PubMed  CAS  Google Scholar 

  79. Vavere AL, et al. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med. 2008;49(2):327–34.

    Article  PubMed  CAS  Google Scholar 

  80. Pflug BR, et al. Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Prostate. 2003;57(3):245–54.

    Article  PubMed  CAS  Google Scholar 

  81. Oyama N, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43(2):181–6.

    PubMed  CAS  Google Scholar 

  82. Kotzerke J, et al. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29(10):1380–4.

    Article  PubMed  CAS  Google Scholar 

  83. Sandblom G, et al. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 2006;67(5):996–1000.

    Article  PubMed  Google Scholar 

  84. Oyama N, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44(4):549–55.

    PubMed  CAS  Google Scholar 

  85. Matthies A, et al. Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging. 2004;31(5):797.

    Article  PubMed  Google Scholar 

  86. Oka S, et al. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48(1):46–55.

    PubMed  CAS  Google Scholar 

  87. Martarello L, et al. Synthesis of syn- and anti-1-amino-3-[18F] fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC), potential PET ligands for tumor detection. J Med Chem. 2002;45(11):2250–9.

    Article  PubMed  CAS  Google Scholar 

  88. Schuster DM, et al. Initial experience with the radiotracer anti-1-amino-3-[18F]fluorocyclobutane-1-carboxylic acid (anti-[ 18F]FACBC) with PET in renal carcinoma. Mol Imaging Biol. 2009;11(6):434–8.

    Article  PubMed  Google Scholar 

  89. Nunez R, et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43(1):46–55.

    PubMed  Google Scholar 

  90. Miyazawa H, et al. PET imaging of non-small-cell lung carcinoma with carbon-11-methionine: relationship between radioactivity uptake and flow-cytometric parameters. J Nucl Med. 1993;34(11):1886–91.

    PubMed  CAS  Google Scholar 

  91. Dehdashti F, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging. 2005;32(3):344–50.

    Article  PubMed  Google Scholar 

  92. Larson SM, et al. Tumor localization of 16{beta}-18F-fluoro-5{alpha}-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45(3):366–73.

    PubMed  CAS  Google Scholar 

  93. Hoskin PJ. Radiotherapy in practice: radioisotope therapy. Oxford: Oxford University Press; 2007. p. vi. 189 p.

    Google Scholar 

  94. Bodei L, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35(10):1934–40.

    Article  PubMed  Google Scholar 

  95. Robinson RG, et al. Clinical experience with strontium-89 in prostatic and breast cancer patients. Semin Oncol. 1993;20(3 Suppl 2):44–8.

    PubMed  CAS  Google Scholar 

  96. Dolezal J, Vizda J, Odrazka K. Prospective evaluation of samarium-153-EDTMP radionuclide treatment for bone metastases in patients with hormone-refractory prostate cancer. Urol Int. 2007;78(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  97. Robinson RG, et al. Strontium 89 therapy for the palliation of pain due to osseous metastases. JAMA. 1995;274(5):420–4.

    Article  PubMed  CAS  Google Scholar 

  98. Han SH, et al. 186Re-etidronate. Efficacy of palliative radionuclide therapy for painful bone metastases. Q J Nucl Med. 2001;45(1):84–90.

    PubMed  CAS  Google Scholar 

  99. Laing AH, et al. Strontium-89 chloride for pain palliation in prostatic skeletal malignancy. Br J Radiol. 1991;64(765):816–22.

    Article  PubMed  CAS  Google Scholar 

  100. Petersen LJ, et al. Samarium-153 treatment of bone pain in patients with metastatic prostate cancer. Dan Med Bull. 2010;57(6):A4154.

    PubMed  Google Scholar 

  101. Bauman G, et al. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol. 2005;75(3):258–70.

    Article  PubMed  CAS  Google Scholar 

  102. Porter AT, Ben-Josef E, Davis L. Systemic administration of new therapeutic radioisotopes, including phosphorus, strontium, samarium, and rhenium. Curr Opin Oncol. 1994;6(6):607–10.

    Article  PubMed  CAS  Google Scholar 

  103. Lam MG, de Klerk JM, Zonnenberg BA. Treatment of painful bone metastases in hormone-refractory prostate cancer with zoledronic acid and samarium-153-ethylenediaminetetramethylphosphonic acid combined. J Palliat Med. 2009;12(7):649–51.

    Article  PubMed  Google Scholar 

  104. Ren X, et al. Combined treatment for pain from bone metastases in patients with prostate cancer. Zhonghua Nan Ke Xue. 2004;10(3):188–90.

    PubMed  Google Scholar 

  105. Nilsson S, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8(7):587–94.

    Article  PubMed  CAS  Google Scholar 

  106. Nilsson S, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11(12):4451–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayaka Moorthy Majuran M.B.B.S., FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Majuran, V.M., Vinayakamoorthy, V., Svasti-Salee, D. (2013). Nuclear Medicine in Prostate Cancer. In: Tewari, A. (eds) Prostate Cancer: A Comprehensive Perspective. Springer, London. https://doi.org/10.1007/978-1-4471-2864-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2864-9_44

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2863-2

  • Online ISBN: 978-1-4471-2864-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics