Advertisement

Cardiovascular Genetics: Focus on Genetics of Coronary Artery Disease

  • Ali J. Marian
Chapter
Part of the Cardiovascular Medicine book series (CVM)

Abstract

  • The human genome is comprised of 3.2 billion nucleotide (base) pairs of which ~30 million base pairs or 1 % code for proteins.

  • Each genome contains approximately 4 million sequence variants (DSVs) of which 3.5 million involve a single nucleotide and are referred to as single nucleotide variants (SNVs) or polymorphisms (SNPs)

  • Single gene disorders are causes by SNVs that exert very large effects on the phenotype. Therefore, the phenotype exhibit clear patterns of inheritance, such as a dominant or a recessive pattern

  • Polygenic disorders are caused by the cumulative effects of a very large number of DSVs each exerting a modest effect on the phenotype.

  • The clinical phenotype, even in single gene disorders, is a complex phenotype caused by the contributions of not only the causal variant but also the effects of a large number of the modifier variants, epigenetic factors, non-coding RNAs and the environmental factors.

  • CAD is a quintessential complex phenotype caused by the complex, stochastic and often non-linear interactions between genetic, genomic, proteomics and the environmental factors, among the others

  • Genome-wide association studies have led to identification of over 100 SNVs associated with CAD

  • The newly identified susceptibility loci offer new mechanisms for the pathogenesis of CAD and therefore, potentially new therapeutic targets

Keywords

Genetics Coronary artery disease Atherosclerosis Complex trait DNA sequencing 

References

  1. 1.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefPubMedGoogle Scholar
  2. 2.
    Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5(10):e254.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, et al. The diploid genome sequence of an Asian individual. Nature. 2008;456(7218):60–5.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, et al. Genetic variation in an individual human exome. PLoS Genet. 2008;4(8):e1000160.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327(5961):78–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452(7189):872–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Keinan A, Clark AG. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science. 2012;336(6082):740–3 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64–9 [Research Support, N.I.H., Extramural].CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Marian AJ. Nature’s genetic gradients and the clinical phenotype. Circ Cardiovasc Genet. 2009;2(6):537–9.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Soemedi R, Wilson IJ, Bentham J, Darlay R, Topf A, Zelenika D, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012;91(3):489–501 [Research Support, Non-U.S. Gov’t].CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Costelloe SJ, El-Sayed Moustafa JS, Drenos F, Palmen J, Li Q, Whiting S, et al. Gene-targeted analysis of copy number variants identifies 3 novel associations with coronary heart disease traits. Circ Cardiovasc Genet. 2012;5(5):555–60 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  14. 14.
    Wang L, Fan C, Topol SE, Topol EJ, Wang Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science. 2003;302(5650):1578–81 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Mani A, Radhakrishnan J, Wang H, Mani MA, Nelson-Williams C, Carew KS, et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. 2007;315(5816):1278–82 [Research Support, N.I.H., Extramural].CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Weng L, Kavaslar N, Ustaszewska A, Doelle H, Schackwitz W, Hebert S, et al. Lack of MEF2A mutations in coronary artery disease. J Clin Invest. 2005;115(4):1016–20 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330(15):1041–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Mayer B, Erdmann J, Schunkert H. Genetics and heritability of coronary artery disease and myocardial infarction. Clin Res Cardiol. 2007;96(1):1–7 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].CrossRefPubMedGoogle Scholar
  19. 19.
    IBC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet. 2011;7(9):e1002260 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].CrossRefGoogle Scholar
  20. 20.
    Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Pirruccello J, Kathiresan S. Genetics of lipid disorders. Curr Opin Cardiol. 2010;25(3):238–42.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].CrossRefPubMedGoogle Scholar
  23. 23.
    Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12(3):213–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Linsel-Nitschke P, Heeren J, Aherrahrou Z, Bruse P, Gieger C, Illig T, et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis. 2010;208(1):183–9.CrossRefPubMedGoogle Scholar
  27. 27.
    McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–33.CrossRefPubMedGoogle Scholar
  31. 31.
    Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature. 2011;470(7333):264–8.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 2010;464(7287):409–12.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Marian AJ. The enigma of genetics etiology of atherosclerosis in the post-GWAS era. Curr Atheroscler Rep. 2012;14(4):295–9.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Marian AJ. Elements of missing heritability. Curr Opin Cardiol. 2012;27(4):197–201.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Molecular Medicine and Internal Medicine, Cardiology, Cardiovascular Genetics, The Brown Foundation Institute of Molecular MedicineThe University of Texas Health Science CenterHoustonUSA
  2. 2.Texas Heart Institute, St. Luke’s HospitalHoustonUSA

Personalised recommendations