Skip to main content

Coronary Heart Disease Syndromes: Pathophysiology and Clinical Recognition

  • Chapter
  • First Online:
Coronary Artery Disease

Part of the book series: Cardiovascular Medicine ((CVM))

Abstract

Atherosclerotic plaque fissuring or ulceration generally causes the development of the acute coronary artery disease syndromes. Vulnerable, or “unstable,” atherosclerotic plaques have temperature and pH heterogeneity, thin fibrous caps, inflammatory cells (primarily macrophages), and activated T cells on their surfaces, as well as an adjacent lipid pool. Some patients have multiple unstable atherosclerotic plaques simultaneously. Several serum markers, when elevated, help identify patients at increased risk for future vascular events. These markers include C-reactive protein, CD40SL, pregnancy-associated protein, serum amyloid protein, brain natriuretic peptide, vascular cell adhesion molecules, intracellular adhesion molecules, and interleukin-6. Unstable angina and non-ST-segment elevation myocardial infarction (NSTEMI) are associated with atherosclerotic plaque fissuring or ulceration; adherence of platelets at the same sites; the accumulation of thromboxane A2, serotonin, adenosine diphosphate, thrombin, tissue factor, and oxygen-derived free radicals; and endothelin, promoting growth of the thrombus and dynamic vasoconstriction with transient coronary artery occlusion (unstable angina or NSTEMI) or sustained coronary artery occlusion (ST-segment elevation MI [STEMI]). The functional absence or diminished effect of nitric oxide, tissue-type plasminogen activator, and prostacyclin at sites of vascular injury contributes to dynamic thrombosis, vasoconstriction, fibroproliferation, and inflammation at sites of coronary artery atherosclerosis and plaque fissuring and ulceration.

Unstable angina, NSTEMI, and STEMI represent a continuum of thrombosis and vasoconstriction, in that unstable angina is often caused by transient and recurrent coronary artery thrombosis and vasoconstriction; NSTEMI by slightly more prolonged (but still usually transient) thrombosis and vasoconstriction or subtotal coronary artery occlusion; and STEMI by prolonged and often permanent coronary artery occlusion. Power-failure complications of MIs occur in patients with ≥40 % irreversible damage to the left ventricle and include cardiogenic shock, medically refractory congestive heart failure, and medically refractory arrhythmias.

Even with relatively small MIs, mechanical problems, such as acute mitral regurgitation, ventricular septal defects, and ventricular aneurysms, may lead to shock and congestive heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heberden W. Some account of a disorder of the breast. Med Trans R Coll Phys II. 1786;2:59–67.

    Google Scholar 

  2. Herrick JB. Clinical features of sudden obstruction of the coronary arteries. JAMA. 1912;59:2015–22.

    Google Scholar 

  3. Rude RE, Bush LR, Izquierdo C, Buja LM, Willerson JT. Effects of inotropic and chronotropic stimuli on acute myocardial ischemic injury. III. Influence of basal heart rate. Am J Cardiol. 1984;53:1688–94.

    CAS  PubMed  Google Scholar 

  4. Rude RE, Izquierdo C, Buja LM, Willerson JT. Effects of inotropic and chronotropic stimuli on acute myocardial ischemic injury. I. Studies with dobutamine in the anesthetized dog. Circulation. 1982;65:1321–8.

    CAS  PubMed  Google Scholar 

  5. Rude RE, Izquierdo C, Bush LR, Buja LM, Willerson JT. Effects of inotropic and chronotropic stimuli on acute myocardial ischemic injury. II. Studies with dopamine and ouabain in the barbiturate-anesthetized dog. J Cardiovasc Pharmacol. 1983;5:717–24.

    CAS  PubMed  Google Scholar 

  6. Sarnoff SJ, Braunwald E, Welch Jr GH, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958;192:148–56.

    CAS  PubMed  Google Scholar 

  7. Sonnenblick EH, Ross Jr J, Braunwald E. Oxygen consumption of the heart. Newer concepts of its multifactoral determination. Am J Cardiol. 1968;22:328–36.

    CAS  PubMed  Google Scholar 

  8. Marcus ML, Doty DB, Hiratzka LF, Wright CB, Eastham CL. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med. 1982;307:1362–6.

    CAS  PubMed  Google Scholar 

  9. Marcus ML, Mueller TM, Eastham CL. Effects of short- and long-term left ventricular hypertrophy on coronary circulation. Am J Physiol. 1981;241:H358–62.

    CAS  PubMed  Google Scholar 

  10. Berkenboom GM, Abramowicz M, Vandermoten P, Degre SG. Role of alpha-adrenergic coronary tone in exercise-induced angina pectoris. Am J Cardiol. 1986;57:195–8.

    CAS  PubMed  Google Scholar 

  11. Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP. Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation. 1986;73:865–76.

    CAS  PubMed  Google Scholar 

  12. Den Dekker MAM, De Smet K, De Bock GH, Tio RA, Oudkerk M, Vliegenthart R. Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis. Eur Radiol. 2012;22(12):2688–98.

    Google Scholar 

  13. Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) Trial. J Am Coll Cardiol. 2011;58:1414–22.

    PubMed  Google Scholar 

  14. Gruettner J, Fink C, Walter T, Meyer M, Apfaltrer P, Schoepf UJ, et al. Coronary computed tomography and triple rule out CT in patients with acute chest pain and an intermediate cardiac risk profile. Part 1: impact on patient management. Eur J Radiol. 2013;82(1):100–5.

    PubMed  Google Scholar 

  15. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393–403.

    CAS  PubMed  Google Scholar 

  16. Hoffmann U, Truong QA, Fleg JL, Goehler A, Gazelle S, Wiviott S, et al. Design of the Rule Out Myocardial Ischemia/Infarction Using Computer Assisted Tomography: a multicenter randomized comparative effectiveness trial of cardiac computed tomography versus alternative triage strategies in patients with acute chest pain in the emergency department. Am Heart J. 2012;163:330–8.

    Google Scholar 

  17. Cyrus T, Gropler RJ, Woodard PK. Coronary CT angiography (CCTA) and advances in CT plaque imaging. J Nucl Cardiol. 2009;16:466–73.

    PubMed  Google Scholar 

  18. Alexopoulos D, Moulias A. In the search of coronary calcium. Int J Cardiol. 2013;167(2):310–7.

    PubMed  Google Scholar 

  19. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122:2748–64.

    PubMed  Google Scholar 

  20. Nucifora G, Bax JJ, van Werkhoven JM, Boogers MJ, Schuijf JD. Coronary artery calcium scoring in cardiovascular risk assessment. Cardiovasc Ther. 2011;29:e43–53.

    PubMed  Google Scholar 

  21. Peters SAE, Bakker M, den Ruijter HM, Bots ML. Added value of CAC in risk stratification for cardiovascular events: a systematic review. Eur J Clin Invest. 2012;42:110–6.

    PubMed  Google Scholar 

  22. Sekikawa A, Curb JD, Edmundowicz D, Okamura T, Choo J, Fujiyoshi A, et al. Coronary artery calcification by computed tomography in epidemiologic research and cardiovascular disease prevention. J Epidemiol. 2012;22:188–98.

    PubMed  Google Scholar 

  23. Hoffmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367:299–308.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Dalen JE, Ockene IS, Alpert JS. Coronary spasm, coronary thrombosis, and myocardial infarction: a hypothesis concerning the pathophysiology of acute myocardial infarction. Am Heart J. 1982;104:1119–24.

    CAS  PubMed  Google Scholar 

  25. Maseri A, Severi S, Nes MD, L’Abbate A, Chierchia S, Marzilli M, et al. “Variant” angina: one aspect of a continuous spectrum of vasospastic myocardial ischemia. Pathogenetic mechanisms, estimated incidence and clinical and coronary arteriographic findings in 138 patients. Am J Cardiol. 1978;42:1019–35.

    CAS  PubMed  Google Scholar 

  26. Latham PM. Collected works. London: The New Sydenham Society; 1876.

    Google Scholar 

  27. Osler W. The Lumleian Lectures ON ANGINA PECTORIS. Lancet. 1910;175:697–702.

    Google Scholar 

  28. Prinzmetal M, Kennamer R, Merliss R, Wada T, Bor N. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am J Med. 1959;27:375–88.

    CAS  PubMed  Google Scholar 

  29. Berman ND, McLaughlin PR, Huckell VF, Mahon WA, Morch JE, Adelman AG. Prinzmetal’s angina with coronary artery spasm. Angiographic, pharmacologic, metabolic and radionuclide perfusion studies. Am J Med. 1976;60:727–32.

    CAS  PubMed  Google Scholar 

  30. Buxton A, Goldberg S, Hirshfeld JW, Wilson J, Mann T, Williams DO, et al. Refractory ergonovine-induced coronary vasospasm: importance of intracoronary nitroglycerin. Am J Cardiol. 1980;46:329–34.

    CAS  PubMed  Google Scholar 

  31. Cheng TO, Bashour T, Kelser Jr GA, Weiss L, Bacos J. Variant angina of Prinzmetal with normal coronary arteriograms. A variant of the variant. Circulation. 1973;47:476–85.

    CAS  PubMed  Google Scholar 

  32. Curry Jr RC, Pepine CJ, Sabom MB, Feldman RL, Christie LG, Conti CR. Effects of ergonovine in patients with and without coronary artery disease. Circulation. 1977;56:803–9.

    PubMed  Google Scholar 

  33. Dhurandhar RW, Watt DL, Silver MD, Trimble AS, Adelman AG. Prinzmetal’s variant form of angina with arteriographic evidence of coronary arterial spasm. Am J Cardiol. 1972;30:902–5.

    CAS  PubMed  Google Scholar 

  34. Helfant RH. Coronary arterial spasm and provocative testing in ischemic heart disease. Am J Cardiol. 1978;41:787–9.

    CAS  PubMed  Google Scholar 

  35. Heupler Jr FA. Provocative testing for coronary arterial spasm: risk, method and rationale. Am J Cardiol. 1980;46:335–7.

    PubMed  Google Scholar 

  36. Heupler Jr FA, Proudfit WL, Razavi M, Shirey EK, Greenstreet R, Sheldon WC. Ergonovine maleate provocative test for coronary arterial spasm. Am J Cardiol. 1978;41:631–40.

    PubMed  Google Scholar 

  37. Higgins CB, Wexler L, Silverman JF, Schroeder JS. Clinical and arteriographic features of Prinzmetal’s variant angina: documentation of etiologic factors. Am J Cardiol. 1976;37:831–9.

    CAS  PubMed  Google Scholar 

  38. Hillis LD, Braunwald E. Coronary-artery spasm. N Engl J Med. 1978;299:695–702.

    CAS  PubMed  Google Scholar 

  39. Maseri A, Mimmo R, Chierchia S. Coronary artery spasm as a cause of acute myocardial ischemia in man. Chest. 1975;68:625–33.

    Google Scholar 

  40. Maseri A, Parodi O, Severi S, Pesola A. Transient transmural reduction of myocardial blood flow demonstrated by thallium-201 scintigraphy, as a cause of variant angina. Circulation. 1976;54:280–8.

    CAS  PubMed  Google Scholar 

  41. McLaughlin PR, Doherty PW, Martin RP, Goris ML, Harrison DC. Myocardial imaging in a patient with reproducible variant angina. Am J Cardiol. 1977;39:126–9.

    CAS  PubMed  Google Scholar 

  42. Nelson C, Nowak B, Childs H, Weinrauch L, Forwand S. Provocative testing for coronary arterial spasm: rationale, risk and clinical illustrations. Am J Cardiol. 1977;40:624–9.

    CAS  PubMed  Google Scholar 

  43. Oliva PB, Potts DE, Pluss RG. Coronary arterial spasm in Prinzmetal angina. Documentation by coronary arteriography. N Engl J Med. 1973;288:745–51.

    CAS  PubMed  Google Scholar 

  44. Ricci DR, Orlick AE, Doherty PW, Cipriano PR, Harrison DC. Reduction of coronary blood flow during coronary artery spasm occurring spontaneously and after provocation by ergonovine maleate. Circulation. 1978;57:392–5.

    CAS  PubMed  Google Scholar 

  45. Scherf D, Perlman A, Schlachman M. Effect of dihydroergocornine on the heart. Proc Soc Exp Biol Med. 1949;71:420–3.

    CAS  PubMed  Google Scholar 

  46. Schroeder JS, Bolen JL, Quint RA, Clark DA, Hayden WG, Higgins CB, et al. Provocation of coronary spasm with ergonovine maleate. New test with results in 57 patients undergoing coronary arteriography. Am J Cardiol. 1977;40:487–91.

    CAS  PubMed  Google Scholar 

  47. Silverman ME, Flamm Jr MD. Variant angina pectoris. Anatomic findings and prognostic implications. Ann Intern Med. 1971;75:339–43.

    CAS  PubMed  Google Scholar 

  48. Wiener L, Kasparian H, Duca PR, Walinsky P, Gottlieb RS, Hanckel F, et al. Spectrum of coronary arterial spasm. Clinical, angiographic and myocardial metabolic experience in 29 cases. Am J Cardiol. 1976;38:945–55.

    CAS  PubMed  Google Scholar 

  49. Cipriano PR, Guthaner DF, Orlick AE, Ricci DR, Wexler L, Silverman JF. The effects of ergonovine maleate on coronary arterial size. Circulation. 1979;59:82–9.

    CAS  PubMed  Google Scholar 

  50. Endo M, Hirosawa K, Kaneko N, Hase K, Inoue Y. Prinzmetal’s variant angina. Coronary arteriogram and left ventriculogram during angina attack induced by methacholine. N Engl J Med. 1976;294:252–5.

    CAS  PubMed  Google Scholar 

  51. Fester A. Provocative testing for coronary arterial spasm with ergonovine maleate. Am J Cardiol. 1980;46:338–40.

    CAS  PubMed  Google Scholar 

  52. Mudge Jr GH, Grossman W, Mills Jr RM, Lesch M, Braunwald E. Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med. 1976;295:1333–7.

    PubMed  Google Scholar 

  53. Raizner AE, Chahine RA, Ishimori T, Verani MS, Zacca N, Jamal N, et al. Provocation of coronary artery spasm by the cold pressor test. Hemodynamic, arteriographic and quantitative angiographic observations. Circulation. 1980;62:925–32.

    CAS  PubMed  Google Scholar 

  54. Yasue H, Horio Y, Nakamura N, Fujii H, Imoto N, Sonoda R, et al. Induction of coronary artery spasm by acetylcholine in patients with variant angina: possible role of the parasympathetic nervous system in the pathogenesis of coronary artery spasm. Circulation. 1986;74:955–63.

    CAS  PubMed  Google Scholar 

  55. Yasue H, Nagao M, Omote S, Takizawa A, Miwa K, Tanaka S. Coronary arterial spasm and Prinzmetal’s variant form of angina induced by hyperventilation and Tris-buffer infusion. Circulation. 1978;58:56–62.

    CAS  PubMed  Google Scholar 

  56. Ashton JH, Ogletree ML, Michel IM, Golino P, McNatt JM, Taylor AL, et al. Cooperative mediation by serotonin S2 and thromboxane A2/prostaglandin H2 receptor activation of cyclic flow variations in dogs with severe coronary artery stenoses. Circulation. 1987;76:952–9.

    CAS  PubMed  Google Scholar 

  57. Bush LR, Campbell WB, Kern K, Tilton GD, Apprill P, Ashton J, et al. The effects of alpha 2-adrenergic and serotonergic receptor antagonists on cyclic blood flow alterations in stenosed canine coronary arteries. Circ Res. 1984;55:642–52.

    CAS  PubMed  Google Scholar 

  58. Bush LR, Campbell WB, Tilton GD, Buja LM, Willerson JT. Effects of the selective thromboxane synthetase inhibitor, dazoxiben, on cyclic flow variations in stenosed canine coronary arteries. Trans Assoc Am Physicians. 1983;96:103–12.

    CAS  PubMed  Google Scholar 

  59. Eidt JF, Allison P, Noble S, Ashton J, Golino P, McNatt J, et al. Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury. J Clin Invest. 1989;84:18–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Golino P, Ashton JH, Buja LM, Rosolowsky M, Taylor AL, McNatt J, et al. Local platelet activation causes vasoconstriction of large epicardial canine coronary arteries in vivo. Thromboxane A2 and serotonin are possible mediators. Circulation. 1989;79:154–66.

    CAS  PubMed  Google Scholar 

  61. Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT. Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med. 1981;304:685–91.

    CAS  PubMed  Google Scholar 

  62. van den Berg EK, Schmitz JM, Benedict CR, Malloy CR, Willerson JT, Dehmer GJ. Transcardiac serotonin concentration is increased in selected patients with limiting angina and complex coronary lesion morphology. Circulation. 1989;79:116–24.

    PubMed  Google Scholar 

  63. Willerson JT, Campbell WB, Winniford MD, Schmitz J, Apprill P, Firth BG, et al. Conversion from chronic to acute coronary artery disease: speculation regarding mechanisms. Am J Cardiol. 1984;54:1349–54.

    CAS  PubMed  Google Scholar 

  64. Willerson JT, Golino P, Eidt J, Campbell WB, Buja LM. Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation. 1989;80:198–205.

    CAS  PubMed  Google Scholar 

  65. Willerson JT, Hillis LD, Winniford M, Buja LM. Speculation regarding mechanisms responsible for acute ischemic heart disease syndromes. J Am Coll Cardiol. 1986;8:245–50.

    CAS  PubMed  Google Scholar 

  66. Constantinides P. Plaque fissuring in human coronary thrombosis. J Atheroscler Res. 1966;6:1–17.

    Google Scholar 

  67. Davies MJ, Thomas AC. Plaque fissuring–the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983;50:127–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Buja LM, Tofe AJ, Kulkarni PV, Mukherjee A, Parkey RW, Francis MD, et al. Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest. 1977;60:724–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Buja LM, Willerson JT. Clinicopathologic correlates of acute ischemic heart disease syndromes. Am J Cardiol. 1981;47:343–56.

    CAS  PubMed  Google Scholar 

  71. Buja LM, Willerson JT. The role of coronary artery lesions in ischemic heart disease: insights from recent clinicopathologic, coronary arteriographic, and experimental studies. Hum Pathol. 1987;18:451–61.

    CAS  PubMed  Google Scholar 

  72. Davies MJ, Fulton WF, Robertson WB. The relation of coronary thrombosis to ischaemic myocardial necrosis. J Pathol. 1979;127:99–110.

    CAS  PubMed  Google Scholar 

  73. Davies MJ, Thomas AC, Knapman PA, Hangartner JR. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation. 1986;73:418–27.

    CAS  PubMed  Google Scholar 

  74. Fuster V. Erratum: mechanisms leading to myocardial infarction: insights from studies of vascular biology (Circulation (1994) 90 (2116–2146)). Circulation. 1995;91:256.

    Google Scholar 

  75. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992;326:242–50.

    CAS  PubMed  Google Scholar 

  76. Willerson J, Hillis L, Buja L. Ischemic heart disease: clinical and pathophysiological aspects. New York: Raven; 1982.

    Google Scholar 

  77. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91:2844–50.

    CAS  PubMed  Google Scholar 

  78. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet. 1996;347:1447–51.

    CAS  PubMed  Google Scholar 

  79. Stefanadis C, Diamantopoulos L, Vlachopoulos C, Tsiamis E, Dernellis J, Toutouzas K, et al. Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation. 1999;99:1965–71.

    CAS  PubMed  Google Scholar 

  80. Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.

    PubMed  Google Scholar 

  81. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000;343:915–22.

    CAS  PubMed  Google Scholar 

  82. Pasterkamp G, Vink A, Borst C. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2001;344:527; author reply 8.

    CAS  PubMed  Google Scholar 

  83. Liuzzo G, Biasucci LM, Gallimore JR, Grillo RL, Rebuzzi AG, Pepys MB, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med. 1994;331:417–24.

    CAS  PubMed  Google Scholar 

  84. Ohman EM, Armstrong PW, Christenson RH, Granger CB, Katus HA, Hamm CW, et al. Cardiac troponin T levels for risk stratification in acute myocardial ischemia. GUSTO IIA Investigators. N Engl J Med. 1996;335:1333–41.

    CAS  PubMed  Google Scholar 

  85. Antman EM, Tanasijevic MJ, Thompson B, Schactman M, McCabe CH, Cannon CP, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med. 1996;335:1342–9.

    CAS  PubMed  Google Scholar 

  86. Berk BC, Weintraub WS, Alexander RW. Elevation of C-reactive protein in “active” coronary artery disease. Am J Cardiol. 1990;65:168–72.

    CAS  PubMed  Google Scholar 

  87. Biasucci LM, Liuzzo G, Fantuzzi G, Caligiuri G, Rebuzzi AG, Ginnetti F, et al. Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation. 1999;99:2079–84.

    CAS  PubMed  Google Scholar 

  88. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB. Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet. 1997;349:462–6.

    CAS  PubMed  Google Scholar 

  89. James SK, Lindahl B, Siegbahn A, Stridsberg M, Venge P, Armstrong P, et al. N-terminal pro-brain natriuretic peptide and other risk markers for the separate prediction of mortality and subsequent myocardial infarction in patients with unstable coronary artery disease: a Global Utilization of Strategies To Open occluded arteries (GUSTO)-IV substudy. Circulation. 2003;108:275–81.

    CAS  PubMed  Google Scholar 

  90. Koenig W, Sund M, Frohlich M, Fischer HG, Lowel H, Doring A, et al. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999;99:237–42.

    CAS  PubMed  Google Scholar 

  91. Kruskal JB, Commerford PJ, Franks JJ, Kirsch RE. Fibrin and fibrinogen-related antigens in patients with stable and unstable coronary artery disease. N Engl J Med. 1987;317:1361–5.

    CAS  PubMed  Google Scholar 

  92. Lindahl B, Venge P, Wallentin L. Relation between troponin T and the risk of subsequent cardiac events in unstable coronary artery disease. The FRISC study group. Circulation. 1996;93:1651–7.

    CAS  PubMed  Google Scholar 

  93. Martin GS, Becker BN, Schulman G. Cardiac troponin-I accurately predicts myocardial injury in renal failure. Nephrol Dial Transplant. 1998;13:1709–12.

    CAS  PubMed  Google Scholar 

  94. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.

    CAS  PubMed  Google Scholar 

  95. Bayes-Genis A, Conover CA, Overgaard MT, Bailey KR, Christiansen M, Holmes Jr DR, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001;345:1022–9.

    CAS  PubMed  Google Scholar 

  96. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595–604.

    CAS  PubMed  Google Scholar 

  97. Conde ID, Kleiman NS. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med. 2003;348:2575–7; author reply −7.

    PubMed  Google Scholar 

  98. de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014–21.

    PubMed  Google Scholar 

  99. Freedman JE. CD40 ligand–assessing risk instead of damage? N Engl J Med. 2003;348:1163–5.

    PubMed  Google Scholar 

  100. Heeschen C, Dimmeler S, Hamm CW, van den Brand MJ, Boersma E, Zeiher AM, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med. 2003;348:1104–11.

    CAS  PubMed  Google Scholar 

  101. Morrow DA, Cannon CP, Rifai N, Frey MJ, Vicari R, Lakkis N, et al. Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. JAMA. 2001;286:2405–12.

    CAS  PubMed  Google Scholar 

  102. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med. 2001;344:1959–65.

    CAS  PubMed  Google Scholar 

  103. Valkonen VP, Paiva H, Salonen JT, Lakka TA, Lehtimaki T, Laakso J, et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet. 2001;358:2127–8.

    CAS  PubMed  Google Scholar 

  104. Sabatine MS, Morrow DA, de Lemos JA, Gibson CM, Murphy SA, Rifai N, et al. Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation. 2002;105:1760–3.

    CAS  PubMed  Google Scholar 

  105. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Libby P. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann N Y Acad Sci. 1995;748:501–7.

    CAS  PubMed  Google Scholar 

  106. Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G, et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci U S A. 1991;88:8154–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation. 1994;90:775–8.

    CAS  PubMed  Google Scholar 

  108. Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, et al. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation. 1995;92:1393–8.

    CAS  PubMed  Google Scholar 

  109. Rajavashisth TB, Xu XP, Jovinge S, Meisel S, Xu XO, Chai NN, et al. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation. 1999;99:3103–9.

    CAS  PubMed  Google Scholar 

  110. Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and −3 in vulnerable human atheromatous plaques. Circulation. 1999;99:2503–9.

    CAS  PubMed  Google Scholar 

  111. Patel SS, Thiagarajan R, Willerson JT, Yeh ET. Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation. 1998;97:75–81.

    CAS  PubMed  Google Scholar 

  112. Elbarouni B, Banihashemi SB, Yan RT, Welsh RC, Kornder JM, Wong GC, et al. Temporal patterns of lipid testing and statin therapy in acute coronary syndrome patients (from the Canadian GRACE experience). Am J Cardiol. 2012;109:1418–24.

    CAS  PubMed  Google Scholar 

  113. Michos ED, Sibley CT, Baer JT, Blaha MJ, Blumenthal RS. Niacin and statin combination therapy for atherosclerosis regression and prevention of cardiovascular disease events: reconciling the AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) trial with previous surrogate endpoint trials. J Am Coll Cardiol. 2012;59:2058–64.

    CAS  PubMed  Google Scholar 

  114. Pitt B, Loscalzo J, Monyak J, Miller E, Raichlen J. Comparison of lipid-modifying efficacy of rosuvastatin versus atorvastatin in patients with acute coronary syndrome (from the LUNAR study). Am J Cardiol. 2012;109:1239–46.

    CAS  PubMed  Google Scholar 

  115. Matter CM, Stuber M, Nahrendorf M. Imaging of the unstable plaque: how far have we got? Eur Heart J. 2009;30:2566–74.

    PubMed Central  PubMed  Google Scholar 

  116. Suh WM, Seto AH, Margey RJP, Cruz-Gonzalez I, Jang IK. Intravascular detection of the vulnerable plaque. Circ Cardiovasc Imaging. 2011;4:169–78.

    PubMed  Google Scholar 

  117. Maehara A, Mintz GS, Weissman NJ. Advances in intravascular imaging. Circ Cardiovasc Inter. 2009;2:482–90.

    Google Scholar 

  118. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    CAS  PubMed  Google Scholar 

  119. Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98:156–9.

    PubMed  Google Scholar 

  120. Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K, et al. Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur Heart J. 2011;32:2814–23.

    PubMed  Google Scholar 

  121. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60(16):1581–98.

    PubMed  Google Scholar 

  122. DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med. 1980;303:897–902.

    CAS  PubMed  Google Scholar 

  123. Chandler AB, Chapman I, Erhardt LR, Roberts WC, Schwartz CJ, Sinapius D, et al. Coronary thrombosis in myocardial infarction. Report of a workshop on the role of coronary thrombosis in the pathogenesis of acute myocardial infarction. Am J Cardiol. 1974;34:823–33.

    CAS  PubMed  Google Scholar 

  124. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation. 1985;71:699–708.

    CAS  PubMed  Google Scholar 

  125. Gibson RS, Beller GA, Gheorghiade M, Nygaard TW, Watson DD, Huey BL, et al. The prevalence and clinical significance of residual myocardial ischemia 2 weeks after uncomplicated non-Q wave infarction: a prospective natural history study. Circulation. 1986;73:1186–98.

    CAS  PubMed  Google Scholar 

  126. Haft JI, Haik BJ, Goldstein JE, Brodyn NE. Development of significant coronary artery lesions in areas of minimal disease. A common mechanism for coronary disease progression. Chest. 1988;94:731–6.

    CAS  PubMed  Google Scholar 

  127. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157–66.

    CAS  PubMed  Google Scholar 

  128. Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. The RISC Group. Lancet. 1990;336:827–30.

    Google Scholar 

  129. Freeman MR, Williams AE, Chisholm RJ, Armstrong PW. Intracoronary thrombus and complex morphology in unstable angina. Relation to timing of angiography and in-hospital cardiac events. Circulation. 1989;80:17–23.

    CAS  PubMed  Google Scholar 

  130. Lewis Jr HD, Davis JW, Archibald DG, Steinke WE, Smitherman TC, Doherty 3rd JE, et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1983;309:396–403.

    PubMed  Google Scholar 

  131. Sherman CT, Litvack F, Grundfest W, Lee M, Hickey A, Chaux A, et al. Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med. 1986;315:913–9.

    CAS  PubMed  Google Scholar 

  132. Carry M, Korley V, Willerson JT, Weigelt L, Ford-Hutchinson AW, Tagari P. Increased urinary leukotriene excretion in patients with cardiac ischemia. In vivo evidence for 5-lipoxygenase activation. Circulation. 1992;85:230–6.

    CAS  PubMed  Google Scholar 

  133. Forman MB, Oates JA, Robertson D, Robertson RM, Roberts 2nd LJ, Virmani R. Increased adventitial mast cells in a patient with coronary spasm. N Engl J Med. 1985;313:1138–41.

    CAS  PubMed  Google Scholar 

  134. Gerrity RG. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981;103:181–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Hansson GK, Jonasson L, Seifert PS, Stemme S. Immune mechanisms in atherosclerosis. Arteriosclerosis. 1989;9:567–78.

    CAS  PubMed  Google Scholar 

  136. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6:131–8.

    CAS  PubMed  Google Scholar 

  137. Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest. 1991;64:5–15.

    CAS  PubMed  Google Scholar 

  138. Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis. 1986;6:505–10.

    CAS  PubMed  Google Scholar 

  139. Fleg JL, Gerstenblith G, Zonderman AB, Becker LC, Weisfeldt ML, Costa Jr PT, et al. Prevalence and prognostic significance of exercise-induced silent myocardial ischemia detected by thallium scintigraphy and electrocardiography in asymptomatic volunteers. Circulation. 1990;81:428–36.

    CAS  PubMed  Google Scholar 

  140. Gottlieb SO, Weisfeldt ML, Ouyang P, Mellits ED, Gerstenblith G. Silent ischemia as a marker for early unfavorable outcomes in patients with unstable angina. N Engl J Med. 1986;314:1214–9.

    CAS  PubMed  Google Scholar 

  141. Weiner DA, Ryan TJ, McCabe CH, Luk S, Chaitman BR, Sheffield LT, et al. Significance of silent myocardial ischemia during exercise testing in patients with coronary artery disease. Am J Cardiol. 1987;59:725–9.

    CAS  PubMed  Google Scholar 

  142. Weisfeldt ML, Flaherty JR. Myocardial infarction. In: Willerson JT, Sanders CA, editors. Clinical cardiology. New York: Grune & Stratton; 1977. p. 346–69.

    Google Scholar 

  143. Kannel WB, Abbott RD. Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham study. N Engl J Med. 1984;311:1144–7.

    CAS  PubMed  Google Scholar 

  144. Weiner DA, Ryan TJ, McCabe CH, Ng G, Chaitman BR, Sheffield LT, et al. Risk of developing an acute myocardial infarction or sudden coronary death in patients with exercise-induced silent myocardial ischemia. A report from the Coronary Artery Surgery Study (CASS) registry. Am J Cardiol. 1988;62:1155–8.

    CAS  PubMed  Google Scholar 

  145. Younis LT, Byers S, Shaw L, Barth G, Goodgold H, Chaitman BR. Prognostic importance of silent myocardial ischemia detected by intravenous dipyridamole thallium myocardial imaging in asymptomatic patients with coronary artery disease. J Am Coll Cardiol. 1989;14:1635–41.

    CAS  PubMed  Google Scholar 

  146. Page DL, Caulfield JB, Kastor JA, DeSanctis RW, Sanders CA. Myocardial changes associated with cardiogenic shock. N Engl J Med. 1971;285:133–7.

    CAS  PubMed  Google Scholar 

  147. Alonso DR, Scheidt S, Post M, Killip T. Pathophysiology of cardiogenic shock. Quantification of myocardial necrosis, clinical, pathologic and electrocardiographic correlations. Circulation. 1973;48:588–96.

    CAS  PubMed  Google Scholar 

  148. Platt MR, Willerson JT, Watson JT. The use of AVCO intraaortic balloon circulatory assistance for patients with cardiogenic shock, severe left ventricular failure and refractory, recurrent ventricular tachycardia. In: Norman J, editor. Coronary artery medicine and surgery: concepts and controversies. New York: Appleton; 1975. p. 401–9.

    Google Scholar 

  149. Sehapayak GK, Watson JT, Curry GC. Late development of intractable ventricular tachycardia after acute myocardial infarction. J Thorac Cardiovasc Surg. 1974;67:818–25.

    CAS  PubMed  Google Scholar 

  150. Willerson JT, Curry GC, Watson JT, Leshin SJ, Ecker RR, Mullins CB, et al. Intraaortic balloon counterpulsation in patients in cardiogenic shock, medically refractory left ventricular failure and/or recurrent ventricular tachycardia. Am J Med. 1975;58:183–91.

    CAS  PubMed  Google Scholar 

  151. Austen WG, Sanders CA, Averill JH, Friedlich AL. Ruptured papillary muscle. Report of a case with successful mitral valve replacement. Circulation. 1965;32:597–601.

    CAS  PubMed  Google Scholar 

  152. Ballester M, Tasca R, Marin L, Rees S, Rickards A, McDonald L. Different mechanisms of mitral regurgitation in acute and chronic forms of coronary heart disease. Eur Heart J. 1983;4:557–65.

    CAS  PubMed  Google Scholar 

  153. Barbour DJ, Roberts WC. Rupture of a left ventricular papillary muscle during acute myocardial infarction: analysis of 22 necropsy patients. J Am Coll Cardiol. 1986;8:558–65.

    CAS  PubMed  Google Scholar 

  154. Coma-Canella I, Gamallo C, Onsurbe PM, Jadraque LM. Anatomic findings in acute papillary muscle necrosis. Am Heart J. 1989;118:1188–92.

    CAS  PubMed  Google Scholar 

  155. Come PC, Riley MF, Weintraub R, Morgan JP, Nakao S. Echocardiographic detection of complete and partial papillary muscle rupture during acute myocardial infarction. Am J Cardiol. 1985;56:787–9.

    CAS  PubMed  Google Scholar 

  156. Meister SG, Helfant RH. Rapid bedside differentiation of ruptured interventricular septum from acute mitral insufficiency. N Engl J Med. 1972;287:1024–5.

    CAS  PubMed  Google Scholar 

  157. Nishimura RA, Schaff HV, Shub C, Gersh BJ, Edwards WD, Tajik AJ. Papillary muscle rupture complicating acute myocardial infarction: analysis of 17 patients. Am J Cardiol. 1983;51:373–7.

    CAS  PubMed  Google Scholar 

  158. Bansal RC, Eng AK, Shakudo M. Role of two-dimensional echocardiography, pulsed, continuous wave color flow Doppler techniques in the assessment of ventricular septal rupture after myocardial infarction. Am J Cardiol. 1990;65:852–60.

    CAS  PubMed  Google Scholar 

  159. Cummings RG, Reimer KA, Califf R, Hackel D, Boswick J, Lowe JE. Quantitative analysis of right and left ventricular infarction in the presence of postinfarction ventricular septal defect. Circulation. 1988;77:33–42.

    CAS  PubMed  Google Scholar 

  160. Edwards BS, Edwards WD, Edwards JE. Ventricular septal rupture complicating acute myocardial infarction: identification of simple and complex types in 53 autopsied hearts. Am J Cardiol. 1984;54:1201–5.

    CAS  PubMed  Google Scholar 

  161. Jones MT, Schofield PM, Dark JF, Moussalli H, Deiraniya AK, Lawson RA, et al. Surgical repair of acquired ventricular septal defect. Determinants of early and late outcome. J Thorac Cardiovasc Surg. 1987;93:680–6.

    CAS  PubMed  Google Scholar 

  162. Lader E, Colvin S, Tunick P. Myocardial infarction complicated by rupture of both ventricular septum and right ventricular papillary muscle. Am J Cardiol. 1983;52:423–4.

    CAS  PubMed  Google Scholar 

  163. Mann JM, Roberts WC. Acquired ventricular septal defect during acute myocardial infarction: analysis of 38 unoperated necropsy patients and comparison with 50 unoperated necropsy patients without rupture. Am J Cardiol. 1988;62:8–19.

    CAS  PubMed  Google Scholar 

  164. Miller DC, Stinson EB. Surgical management of acute mechanical defects secondary to myocardial infarction. Am J Surg. 1981;141:677–83.

    CAS  PubMed  Google Scholar 

  165. Moore CA, Nygaard TW, Kaiser DL, Cooper AA, Gibson RS. Postinfarction ventricular septal rupture: the importance of location of infarction and right ventricular function in determining survival. Circulation. 1986;74:45–55.

    CAS  PubMed  Google Scholar 

  166. Norell MS, Gershlick AH, Pillai R, Walesby R, Magee PG, Wright J, et al. Ventricular septal rupture complicating myocardial infarction: is earlier surgery justified? Eur Heart J. 1987;8:1281–6.

    CAS  PubMed  Google Scholar 

  167. Radford MJ, Johnson RA, Daggett Jr WM, Fallon JT, Buckley MJ, Gold HK, et al. Ventricular septal rupture: a review of clinical and physiologic features and an analysis of survival. Circulation. 1981;64:545–53.

    CAS  PubMed  Google Scholar 

  168. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.

    CAS  PubMed  Google Scholar 

  169. Bush LR, Buja LM, Tilton G, Wathen M, Apprill P, Ashton J, et al. Effects of propranolol and diltiazem alone and in combination on the recovery of left ventricular segmental function after temporary coronary occlusion and long-term reperfusion in conscious dogs. Circulation. 1985;72:413–30.

    CAS  PubMed  Google Scholar 

  170. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol. 1983;1:1047–55.

    CAS  PubMed  Google Scholar 

  171. Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation. 1988;78:729–35.

    CAS  PubMed  Google Scholar 

  172. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Marban E. Myocardial stunning and hibernation. The physiology behind the colloquialisms. Circulation. 1991;83:681–8.

    CAS  PubMed  Google Scholar 

  174. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117:211–21.

    CAS  PubMed  Google Scholar 

  175. Schaefer S, Schwartz GG, Gober JR, Wong AK, Camacho SA, Massie B, et al. Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo. J Clin Invest. 1990;85:706–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  176. An Khaw B, Gold HK, Fallon JT, Haber E. Detection of serum cardiac myosin light chains in acute experimental myocardial infarction: Radioimmunoassay of cardiac myosin light chains. Circulation. 1978;58:1130–6.

    Google Scholar 

  177. Stone MJ, Waterman MR, Poliner LR, Templeton GH, Buja LM, Willerson JT. Myoglobinemia is an early and quantitative index of acute myocardial infarction. Angiology. 1978;29:386–92.

    CAS  PubMed  Google Scholar 

  178. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987;113:1333–44.

    CAS  PubMed  Google Scholar 

  179. Puleo PR, Perryman MB, Bresser MA, Rokey R, Pratt CM, Roberts R. Creatine kinase isoform analysis in the detection and assessment of thrombolysis in man. Circulation. 1987;75:1162–9.

    CAS  PubMed  Google Scholar 

  180. Abendschein D, Seacord LM, Nohara R, Sobel BE, Jaffe AS. Prompt detection of myocardial injury by assay of creatine kinase isoforms in initial plasma samples. Clin Cardiol. 1988;11:661–4.

    CAS  PubMed  Google Scholar 

  181. Ellis AK, Little T, Masud AR, Liberman HA, Morris DC, Klocke FJ. Early noninvasive detection of successful reperfusion in patients with acute myocardial infarction. Circulation. 1988;78:1352–7.

    CAS  PubMed  Google Scholar 

  182. Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation. 1991;83:902–12.

    CAS  PubMed  Google Scholar 

  183. Adams 3rd JE, Bodor GS, Davila-Roman VG, Delmez JA, Apple FS, Ladenson JH, et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation. 1993;88:101–6.

    PubMed  Google Scholar 

  184. Mair J, Morandell D, Genser N, Lechleitner P, Dienstl F, Puschendorf B. Equivalent early sensitivities of myoglobin, creatine kinase MB mass, creatine kinase isoform ratios, and cardiac troponins I and T for acute myocardial infarction. Clin Chem. 1995;41:1266–72.

    CAS  PubMed  Google Scholar 

  185. Trahern CA, Gere JB, Krauth GH, Bigham DA. Clinical assessment of serum myosin light chains in the diagnosis of acute myocardial infarction. Am J Cardiol. 1978;41:641–5.

    CAS  PubMed  Google Scholar 

  186. White HD. The prequel. Defining prognostically important criteria in the periprocedural PCI troponin saga. Circ Cardiovasc Interv. 2012;5:142–5.

    PubMed  Google Scholar 

  187. Bonaca M, Scirica B, Sabatine M, Dalby A, Spinar J, Murphy SA, et al. Prospective evaluation of the prognostic implications of improved assay performance with a sensitive assay for cardiac troponin I. J Am Coll Cardiol. 2010;55:2118–24.

    CAS  PubMed  Google Scholar 

  188. Cannon CP, Weintraub WS, Demopoulos LA, Vicari R, Frey MJ, Lakkis N, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med. 2001;344:1879–87.

    CAS  PubMed  Google Scholar 

  189. Bonte FJ, Parkey RW, Graham KD, Moore J, Stokely EM. A new method for radionuclide imaging of myocardial infarcts. Radiology. 1974;110:473–4.

    CAS  PubMed  Google Scholar 

  190. Parkey RW, Bonte FJ, Meyer SL, Atkins JM, Curry GL, Stokely EM, et al. A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation. 1974;50:540–6.

    CAS  PubMed  Google Scholar 

  191. Wackers FJ, Schoot JB, Sokole EB, Samson G, Niftrik GJ, Lie KI, et al. Noninvasive visualization of acute myocardial infarction in man with thallium-201. Br Heart J. 1975;37:741–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Willerson JT, Parkey RW, Bonte FJ, Meyer SL, Atkins JM, Stokley EM. Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation. 1975;51:1046–52.

    CAS  PubMed  Google Scholar 

  193. Wackers FJ, Sokole EB, Samson G, Schoot JB, Lie KI, Liem KL, et al. Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N Engl J Med. 1976;295:1–5.

    CAS  PubMed  Google Scholar 

  194. Buja LM, Poliner LR, Parkey RW, Pulido JI, Hutcheson D, Platt MR, et al. Clinicopathologic study of persistently positive technetium-99m stannous pyrophosphate myocardial scintigrams and myocytolytic degeneration after myocardial infarction. Circulation. 1977;56:1016–23.

    CAS  PubMed  Google Scholar 

  195. Willerson JT, Parkey RW, Stokely EM, Bonte FJ, Lewis S, Harris RA, et al. Infarct sizing with technetium-99m stannous pyrophosphate scintigraphy in dogs and man; relationship between scintigraphic and praecordial mapping estimates of infarct size in patients. Cardiovasc Res. 1977;11:291–8.

    CAS  PubMed  Google Scholar 

  196. Silverman KJ, Becker LC, Bulkley BH, Burow RD, Mellits ED, Kallman CH, et al. Value of early thallium-201 scintigraphy for predicting mortality in patients with acute myocardial infarction. Circulation. 1980;61:996–1003.

    CAS  PubMed  Google Scholar 

  197. Wheelan K, Wolfe C, Corbett J, Rude RE, Winniford M, Parkey RW, et al. Early positive technetium-99m stannous pyrophosphate images as a marker of reperfusion after thrombolytic therapy for acute myocardial infarction. Am J Cardiol. 1985;56:252–6.

    CAS  PubMed  Google Scholar 

  198. Carrio I, Berna L, Ballester M, Estorch M, Obrador D, Cladellas M, et al. Indium-111 antimyosin scintigraphy to assess myocardial damage in patients with suspected myocarditis and cardiac rejection. J Nucl Med. 1988;29:1893–900.

    CAS  PubMed  Google Scholar 

  199. Johnson LL, Seldin DW, Becker LC, LaFrance ND, Liberman HA, James C, et al. Antimyosin imaging in acute transmural myocardial infarctions: results of a multicenter clinical trial. J Am Coll Cardiol. 1989;13:27–35.

    CAS  PubMed  Google Scholar 

  200. Dec GW, Palacios I, Yasuda T, Fallon JT, Khaw BA, Strauss HW, et al. Antimyosin antibody cardiac imaging: its role in the diagnosis of myocarditis. J Am Coll Cardiol. 1990;16:97–104.

    CAS  PubMed  Google Scholar 

  201. Parkey RW, Kulkarni PV, Lewis SE, Datz FL, Dehmer GJ, Gutekunst DP, et al. Effect of coronary blood flow and site of injection on Tc-99m PPi detection of early canine myocardial infarcts. J Nucl Med. 1981;22:133–7.

    CAS  PubMed  Google Scholar 

  202. Sanford CF, Corbett J, Nicod P, Curry GL, Lewis SE, Dehmer GJ, et al. Value of radionuclide ventriculography in the immediate characterization of patients with acute myocardial infarction. Am J Cardiol. 1982;49:637–44.

    CAS  PubMed  Google Scholar 

  203. Schelbert HR, Verba JW, Johnson AD, Brock GW, Alazraki NP, Rose FJ, et al. Nontraumatic determination of left ventricular ejection fraction by radionuclide angiocardiography. Circulation. 1975;51:902–9.

    CAS  PubMed  Google Scholar 

  204. Stokely EM, Parkey RW, Bonte FJ, Graham KD, Stone MJ, Willerson JT. Gated blood pool imaging following 99mTc stannous pyrophosphate imaging. Radiology. 1976;120:433–4.

    CAS  PubMed  Google Scholar 

  205. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt B. A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol. 1971;28:575–80.

    CAS  PubMed  Google Scholar 

  206. Nixon JV, Narahara KA, Smitherman TC. Estimation of myocardial involvement in patients with acute myocardial infarction by two-dimensional echocardiography. Circulation. 1980;62:1248–55.

    CAS  PubMed  Google Scholar 

  207. Schnitgger I. Cardiac and extracardiac masses: echocardiographic evaluation. In: Marcus M, Schelbert H, Skorton D, editors. Cardiac imaging: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders; 1991. p. 511–37.

    Google Scholar 

  208. Sheiban I, Casarotto D, Trevi G, Benussi P, Marini A, Accardi R, et al. Two-dimensional echocardiography in the diagnosis of intracardiac masses: a prospective study with anatomic validation. Cardiovasc Intervent Radiol. 1987;10:157–61.

    CAS  PubMed  Google Scholar 

  209. Spirito P, Bellotti P, Chiarella F, Domenicucci S, Sementa A, Vecchio C. Prognostic significance and natural history of left ventricular thrombi in patients with acute anterior myocardial infarction: a two-dimensional echocardiographic study. Circulation. 1985;72:774–80.

    CAS  PubMed  Google Scholar 

  210. Stratton JR, Resnick AD. Increased embolic risk in patients with left ventricular thrombi. Circulation. 1987;75:1004–11.

    CAS  PubMed  Google Scholar 

  211. Greaves SC, Zhi G, Lee RT, Solomon SD, MacFadyen J, Rapaport E, et al. Incidence and natural history of left ventricular thrombus following anterior wall acute myocardial infarction. Am J Cardiol. 1997;80:442–8.

    CAS  PubMed  Google Scholar 

  212. Aschenberg W, Schluter M, Kremer P, Schroder E, Siglow V, Bleifeld W. Transesophageal two-dimensional echocardiography for the detection of left atrial appendage thrombus. J Am Coll Cardiol. 1986;7:163–6.

    CAS  PubMed  Google Scholar 

  213. Lee W, Schiller NB. Transesophageal echocardiography in clinical cardiology. In: Marcus M, Schelbert H, Skorton D, editors. Cardiac imaging: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders; 1991. p. 605–16.

    Google Scholar 

  214. Loeppky JA, Greene ER, Hoekenga DE, Caprihan A, Luft UC. Beat-by-beat stroke volume assessment by pulsed Doppler in upright and supine exercise. J Appl Physiol. 1981;50:1173–82.

    CAS  PubMed  Google Scholar 

  215. Nellessen U, Daniel WG, Matheis G, Oelert H, Depping K, Lichtlen PR. Impending paradoxical embolism from atrial thrombus: correct diagnosis by transesophageal echocardiography and prevention by surgery. J Am Coll Cardiol. 1985;5:1002–4.

    CAS  PubMed  Google Scholar 

  216. Pearlman A, Otto C. Quantification of valvular regurgitation. Echocardiography. 1987;271.

    Google Scholar 

  217. Pearson AC, Labovitz AJ, Mrosek D, Williams GA, Kennedy HL. Assessment of diastolic function in normal and hypertrophied hearts: comparison of Doppler echocardiography and M-mode echocardiography. Am Heart J. 1987;113:1417–25.

    CAS  PubMed  Google Scholar 

  218. Rokey R, Kuo LC, Zoghbi WA, Limacher MC, Quinones MA. Determination of parameters of left ventricular diastolic filling with pulsed Doppler echocardiography: comparison with cineangiography. Circulation. 1985;71:543–50.

    CAS  PubMed  Google Scholar 

  219. Stein PD, Sabbah HN, Albert DE, Snyder JE. Continuous-wave Doppler for the noninvasive evaluation of aortic blood velocity and rate of change of velocity: evaluation in dogs. Med Instrum. 1987;21:177–82.

    CAS  PubMed  Google Scholar 

  220. Sobel BE, Bresnahan GF, Shell WE, Yoder RD. Estimation of infarct size in man and its relation to prognosis. Circulation. 1972;46:640–8.

    CAS  PubMed  Google Scholar 

  221. Corbett JR, Lewis SE, Wolfe CL, Jansen DE, Lewis M, Rellas JS, et al. Measurement of myocardial infarct size by technetium pyrophosphate single-photon tomography. Am J Cardiol. 1984;54:1231–6.

    CAS  PubMed  Google Scholar 

  222. Jansen DE, Corbett JR, Wolfe CL, Lewis SE, Gabliani G, Filipchuk N, et al. Quantification of myocardial infarction: a comparison of single photon-emission computed tomography with pyrophosphate to serial plasma MB-creatine kinase measurements. Circulation. 1985;72:327–33.

    CAS  PubMed  Google Scholar 

  223. Wolfe CL, Lewis SE, Corbett JR, Parkey RW, Buja LM, Willerson JT. Measurement of myocardial infarction fraction using single photon emission computed tomography. J Am Coll Cardiol. 1985;6:145–51.

    CAS  PubMed  Google Scholar 

  224. Applegate RJ, Dell’Italia LJ, Crawford MH. Usefulness of two-dimensional echocardiography during low-level exercise testing early after uncomplicated acute myocardial infarction. Am J Cardiol. 1987;60:10–4.

    CAS  PubMed  Google Scholar 

  225. Armstrong WF, O’Donnell J, Ryan T, Feigenbaum H. Effect of prior myocardial infarction and extent and location of coronary disease on accuracy of exercise echocardiography. J Am Coll Cardiol. 1987;10:531–8.

    CAS  PubMed  Google Scholar 

  226. Corbett JR, Dehmer GJ, Lewis SE, Woodward W, Henderson E, Parkey RW, et al. The prognostic value of submaximal exercise testing with radionuclide ventriculography before hospital discharge in patients with recent myocardial infarction. Circulation. 1981;64:535–44.

    CAS  PubMed  Google Scholar 

  227. Corbett JR, Nicod P, Lewis SE, Rude RE, Willerson JT. Prognostic value of submaximal exercise radionuclide ventriculography after myocardial infarction. Am J Cardiol. 1983;52:82A–91.

    CAS  PubMed  Google Scholar 

  228. Corbett JR, Nicod PH, Huxley RL, Lewis SE, Rude RE, Willerson JT. Left ventricular functional alterations at rest and during submaximal exercise in patients with recent myocardial infarction. Am J Med. 1983;74:577–91.

    CAS  PubMed  Google Scholar 

  229. Crawford MH, Petru MA, Amon KW, Sorensen SG, Vance WS. Comparative value of 2-dimensional echocardiography and radionuclide angiography for quantitating changes in left ventricular performance during exercise limited by angina pectoris. Am J Cardiol. 1984;53:42–6.

    CAS  PubMed  Google Scholar 

  230. Dehmer GJ, Lewis SE, Hillis LD, Corbett J, Parkey RW, Willerson JT. Exercise-induced alterations in left ventricular volumes and the pressure-volume relationship: a sensitive indicator of left ventricular dysfunction in patients with coronary artery disease. Circulation. 1981;63:1008–18.

    CAS  PubMed  Google Scholar 

  231. Gibson RS, Watson DD, Taylor GJ, Crosby IK, Wellons HL, Holt ND, et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol. 1983;1:804–15.

    CAS  PubMed  Google Scholar 

  232. Melin JA, Wijns W, Keyeux A, Gurne O, Cogneau M, Michel C, et al. Assessment of thallium-201 redistribution versus glucose uptake as predictors of viability after coronary occlusion and reperfusion. Circulation. 1988;77:927–34.

    CAS  PubMed  Google Scholar 

  233. Pulido JI, Doss J, Twieg D, Blomqvist GC, Faulkner D, Horn V, et al. Submaximal exercise testing after acute myocardial infarction: myocardial scintigraphic and electrocardiographic observations. Am J Cardiol. 1978;42:19–28.

    CAS  PubMed  Google Scholar 

  234. Anderson WD, Wagner NB, Lee KL, White RD, Yuschak J, Behar VS, et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. VI: Identification of screening criteria for non-acute myocardial infarcts. Am J Cardiol. 1988;61:729–33.

    CAS  PubMed  Google Scholar 

  235. Shan K, Constantine G, Sivananthan M, Flamm SD. Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation. 2004;109:1328–34.

    PubMed  Google Scholar 

  236. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.

    CAS  PubMed  Google Scholar 

  237. Bhan A, Kapetanakis S, Monaghan MJ. Three-dimensional echocardiography. Heart. 2010;96:153–63.

    CAS  PubMed  Google Scholar 

  238. Puskas F, Cleveland JCJ, Singh R, Weitzel NS, Reece TB, Shull R, et al. Detection of left ventricular apical thrombus with three-dimensional transesophageal echocardiography. Semin Cardiothorac Vasc Anesth. 2011;15:102–4.

    PubMed  Google Scholar 

  239. Cobb LA, Baum RS, Alvarez 3rd H, Schaffer WA. Resuscitation from out-of-hospital ventricular fibrillation: 4 years follow-up. Circulation. 1975;52:III223–35.

    CAS  PubMed  Google Scholar 

  240. Liberthson RR, Nagel EL, Hirschman JC, Nussenfeld SR. Prehospital ventricular defibrillation. Prognosis and follow-up course. N Engl J Med. 1974;291:317–21.

    CAS  PubMed  Google Scholar 

  241. Liberthson RR, Nagel EL, Hirschman JC, Nussenfeld SR, Blackbourne BD, Davis JH. Pathophysiologic observations in prehospital ventricular fibrillation and sudden cardiac death. Circulation. 1974;49:790–8.

    CAS  PubMed  Google Scholar 

  242. Ahmed J, Ruygrok PN, Wilson NJ, Webster MWI, Greaves S, Gerber I. Percutaneous closure of post-myocardial infarction ventricular septal defects: a single centre experience. Heart Lung Circ. 2008;17:119–23.

    PubMed  Google Scholar 

  243. Attia R, Blauth C. Which patients might be suitable for a septal occluder device closure of postinfarction ventricular septal rupture rather than immediate surgery? Interact Cardiovasc Thorac Surg. 2010;11:626–9.

    PubMed  Google Scholar 

  244. Maltais S, Ibrahim R, Basmadjian AJ, Carrier M, Bouchard D, Cartier R, et al. Postinfarction ventricular septal defects: towards a new treatment algorithm. Ann Thorac Surg. 2009;87:687–93.

    PubMed  Google Scholar 

  245. Lee L, Bates ER, Pitt B, Walton JA, Laufer N, O’Neill WW. Percutaneous transluminal coronary angioplasty improves survival in acute myocardial infarction complicated by cardiogenic shock. Circulation. 1988;78:1345–51.

    CAS  PubMed  Google Scholar 

  246. Rothkopf M, Boerner J, Stone MJ, Smitherman TC, Buja LM, Parkey RW, et al. Detection of myocardial infarct extension by CK-B radioimmunoassay. Circulation. 1979;59:268–74.

    CAS  PubMed  Google Scholar 

  247. Marmor A, Sobel BE, Roberts R. Factors presaging early recurrent myocardial infarction (“extension”). Am J Cardiol. 1981;48:603–10.

    CAS  PubMed  Google Scholar 

  248. Muller JE, Rude RE, Braunwald E, Hartwell TD, Roberts R, Sobel BE, et al. Myocardial infarct extension: occurrence, outcome, and risk factors in the Multicenter Investigation of Limitation of Infarct Size. Ann Intern Med. 1988;108:1–6.

    Google Scholar 

  249. Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML. Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. N Engl J Med. 1979;300:57–62.

    CAS  PubMed  Google Scholar 

  250. Hammerman H, Schoen FJ, Braunwald E, Kloner RA. Drug-induced expansion of infarct: morphologic and functional correlations. Circulation. 1984;69:611–7.

    CAS  PubMed  Google Scholar 

  251. Hudson MP, Armstrong PW, Ruzyllo W, Brum J, Cusmano L, Krzeski P, et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction. Results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) Trial. J Am Coll Cardiol. 2006;48:15–20.

    CAS  PubMed  Google Scholar 

  252. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986;74:693–702.

    CAS  PubMed  Google Scholar 

  253. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med. 1988;319:80–6.

    CAS  PubMed  Google Scholar 

  254. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J Med. 1987;316:1429–35.

    Google Scholar 

  255. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N Engl J Med. 1992;327:685–91.

    Google Scholar 

  256. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993;342:821–8.

    Google Scholar 

  257. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. Lancet. 1995;345:669–85.

    Google Scholar 

  258. Six-month effects of early treatment with lisinopril and transdermal glyceryl trinitrate singly and together withdrawn six weeks after acute myocardial infarction: the GISSI-3 trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico. J Am Coll Cardiol. 1996;27:337–44.

    Google Scholar 

  259. Hutchins GM, Bulkley BH. Infarct expansion versus extension: two different complications of acute myocardial infarction. Am J Cardiol. 1978;41:1127–32.

    CAS  PubMed  Google Scholar 

  260. Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med. 1995;333:1670–6.

    CAS  PubMed  Google Scholar 

  261. Lindpaintner K, Ganten D. The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res. 1991;68:905–21.

    CAS  PubMed  Google Scholar 

  262. Schachinger V, Assmus B, Honold J, Lehmann R, Hofmann WK, Martin H, et al. Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial. Clin Res Cardiol. 2006;95:13–22.

    CAS  PubMed  Google Scholar 

  263. Erbs S, Linke A, Schachinger V, Assmus B, Thiele H, Diederich K, et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation. 2007;116:366–74.

    PubMed  Google Scholar 

  264. Van Belle E, Lablanche JM, Bauters C, Renaud N, McFadden EP, Bertrand ME. Coronary angioscopic findings in the infarct-related vessel within 1 month of acute myocardial infarction: natural history and the effect of thrombolysis. Circulation. 1998;97:26–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Willerson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Willerson, J.T., Armstrong, P.W. (2015). Coronary Heart Disease Syndromes: Pathophysiology and Clinical Recognition. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics