Skip to main content

Computed Tomograph Cardiovascular Imaging

  • Chapter
  • First Online:
  • 5846 Accesses

Part of the book series: Cardiovascular Medicine ((CVM))

Abstract

Cardiac computed tomography (CT) is a robust technology for the noninvasive assessment of a spectrum of cardiovascular disease processes. The predominant use of cardiac CT is first detection of atherosclerosis and subsequently detection of stenosis, perfusion imaging, wall motion and ultimately valve disease. Although the technology has been clinically available for more than 25 years, cardiologists and even radiologists are largely unaware of its full capabilities. This chapter reviews cardiac CT’s current clinical uses and its potential for even greater utility in the near future. Advances in spatial and temporal resolution, electrocardiographic (ECG) triggering methodology, radiation dose reduction, and image reconstruction software have helped in the evaluation of coronary artery anatomy and vessel patency, providing the ability to noninvasively diagnose or rule out significant epicardial CAD. Cardiac CT allows the 3-dimensional (3D) simultaneous imaging of additional cardiac structures–including the coronary veins, pulmonary veins, atria, ventricles, aorta, and thoracic arterial and venous structures–and definition of their spatial relationships for the comprehensive assessment of a variety of cardiovascular disease processes. This chapter details the role of cardiac CT for the assessment of cardiovascular pathology with an emphasis on the detection of coronary atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Jr M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    CAS  PubMed  Google Scholar 

  2. Lu B, Mao SS, Zhuang N, et al. Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol. 2001;36:250–6.

    CAS  PubMed  Google Scholar 

  3. Becker CR, Kleffel T, Crispin A, Knez A, Young J, Schoepf UJ, Haberl R, Reiser MF. Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR Am J Roentgenol. 2001;176:1295–8.

    CAS  PubMed  Google Scholar 

  4. Budoff MJ, Achenbach S, Duerinckx A. Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. J Am Coll Cardiol. 2003;42:1867–78.

    PubMed  Google Scholar 

  5. Nasir K, Budoff MJ, Post WS, Fishman EK, Mahesh M, Lima JA, Blumenthal RS. Electron beam CT vs. helical CT scans of coronary arteries: current utility and future directions. Am Heart J. 2003;146:949–77.

    Google Scholar 

  6. Hunold P, Vogt FM, Schmermund A, Debatin JF, Kerkhoff G, Budde T, Erbel R, Ewen K, Barkhausen J. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology. 2003;226:145–52.

    PubMed  Google Scholar 

  7. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance imaging with conventional angiography. N Engl J Med. 1993;328:828–32.

    CAS  PubMed  Google Scholar 

  8. Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB. Magnetic resonance imaging of coronary arteries: technique and preliminary results. Br Heart J. 1993;70:315–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Paschal CB, Haache EM, Adler LP. Coronary arteries: three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J Magn Reson Imaging. 1993;3:491–501.

    CAS  PubMed  Google Scholar 

  10. Duerinckx AJ, Urman MK. Two dimensional coronary MR angiography: analysis of initial clinical results. Radiology. 1994;193:731–8.

    CAS  PubMed  Google Scholar 

  11. Duerinckx AJ, Urman MK, Atkinson DJ, Simonetti OP, Sinha U, Lewis B. Limitations of MR coronary angiography. J Magn Reson Imaging. 1994;4:81.

    Google Scholar 

  12. Duerinckx AJ, Atkinson DP, Mintorovitch J, Simonetti OP, Vrman MK. Two-dimensional coronary MRA: limitations and artifacts. Eur Radiol. 1996;6:312–25.

    CAS  PubMed  Google Scholar 

  13. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–9.

    CAS  PubMed  Google Scholar 

  14. Chernoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR Am J Roentgenol. 1997;169:93–9.

    CAS  PubMed  Google Scholar 

  15. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993;91:1800–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Eggen DA, Strong JP, McGill Jr HC. Coronary calcification. Relationship to clinically significant coronary lesions and race, sex, and topographic distribution. Circulation. 1965;32:948–55.

    CAS  PubMed  Google Scholar 

  17. Mautner SL, Mautner GC, Froehlich J, Feuerstein IM, Proschan MA, Roberts WC, Doppman JL. Coronary artery disease: prediction with in vitro electron beam CT. Radiology. 1994;192:625–30.

    CAS  PubMed  Google Scholar 

  18. Schmermund A, Baumgart D, Gorge G, Seibel R, Gronemeyer D, Ge J, Haude M, Rumberger J, Erbel R. Coronary artery calcium in acute coronary syndromes: a comparative study of electron-beam computed tomography, coronary angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina. Circulation. 1997;96:1461–9.

    CAS  PubMed  Google Scholar 

  19. Mintz GS, Pichard AD, Popma JJ, Kent KM, Satler LF, Bucher TA, Leon MB. Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol. 1997;29:268–74.

    CAS  PubMed  Google Scholar 

  20. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92:2157–62.

    CAS  PubMed  Google Scholar 

  21. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron beam computed tomography. N Engl J Med. 1998;339:1972–8.

    CAS  PubMed  Google Scholar 

  22. Budoff MJ, Mao S, Lu B, Takasu J, Child J, Carson S, Fisher H. Ability of calibration phantom to reduce the interscan variability in electron beam computed tomography. J Comput Assist Tomogr. 2002;26(6):886–91.

    PubMed  Google Scholar 

  23. Wong ND, Budoff MJ, Pio J, Detrano RC. Coronary calcium and cardiovascular event risk: evaluation by age- and sex-specific quartiles. Am Heart J. 2002;143:456–9.

    PubMed  Google Scholar 

  24. Achenbach S, Ropers D, Mohlenkamp S, Schmermund A, Muschiol G, Groth J, Kusus M, Regenfus M, Daniel WG, Erbel R, Moshage W. Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol. 2001;87:210–3.

    CAS  PubMed  Google Scholar 

  25. Mao S, Bakhsheshi H, Lu B, Liu SC, Oudiz RJ, Budoff MJ. Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring. Radiology. 2001;220:707–11.

    CAS  PubMed  Google Scholar 

  26. Daniell AL, Wong ND, Friedman JD, et al. Reproducibility of coronary calcium measurements from multidetector computed tomography. J Am Coll Cardiol. 2003;41(Suppl A):456–7.

    Google Scholar 

  27. Budoff MJ, Lane KL, Bakhsheshi H, Mao SS, Grassman BO, Friedman BC, Brundage BH. Rates of progression of coronary calcification by electron beam computed tomography. Am J Cardiol. 2000;86(1):8–11.

    CAS  PubMed  Google Scholar 

  28. Raggi P, Cooil B, Shaw L, et al. Progression of coronary calcification on serial electron beam tomography scanning is greater in patients with future myocardial infarction. Am J Cardiol. 2003;92:827–9.

    PubMed  Google Scholar 

  29. Raggi P, Callister TQ, Shaw LJ. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol. 2004;24(7):1272–7.

    CAS  PubMed  Google Scholar 

  30. Budoff MJ, Hokanson JE, Nasir K, Shaw LJ, Kinney GL, Chow D, Demoss D, Nuguri V, Nabavi V, Ratakonda R, Berman DS, Raggi P. Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc Imaging. 2010;3:1229–36.

    PubMed  Google Scholar 

  31. Berry JD, Liu K, Folsom AR, Lewis CE, Carr JJ, Polak JF, Shea S, Sidney S, O’Leary DH, Chan C, Lloyd-Jones DM. Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease: the coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis. Circulation. 2009;119:382–9.

    PubMed Central  PubMed  Google Scholar 

  32. Budoff MJ, Young R, Lopez VA, Kronmal RA, Nasir K, Blumenthal RS, Detrano RC, Bild DE, Guerci AD, Liu K, Shea S, Szklo M, Post W, Lima J, Bertoni A, Wong ND. Progression of coronary calcium and incident coronary heart disease events: the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol. 2013;61(12):1231–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Baumgart D, Schmermund A, Goerge G, Haude M, Ge J, Adamzik M, Sehnert C, Altmaier K, Groenemeyer D, Seibel R, Erbel R. Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol. 1997;30:57–64.

    CAS  PubMed  Google Scholar 

  34. Mautner GC, Mautner SL, Froehlich J, Feuerstein IM, Proschan MA, Roberts WC, Doppman JL. Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation. Radiology. 1994;192:619–23.

    CAS  PubMed  Google Scholar 

  35. Budoff MJ, Georgiou D, Brody A, Agatston AS, Kennedy J, Wolfkiel C, Stanford W, Shields P, Lewis RJ, Janowitz WR, Rich S, Brundage BH. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation. 1996;93:898–904.

    CAS  PubMed  Google Scholar 

  36. Haberl R, Becker A, Leber A, Knez A, Becker C, Lang C, Bruning R, Reiser M, Steinbeck G. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol. 2001;37:451–7.

    CAS  PubMed  Google Scholar 

  37. Guerci A, Spadaro L, Goodman KG, et al. Comparison of electron beam computed tomography scanning and conventional risk factor assessment for the prediction of angiographic coronary artery disease. J Am Coll Cardiol. 1998;32:673–7.

    CAS  PubMed  Google Scholar 

  38. Schmermund A, Erbel R. Unstable coronary plaque and its relation to coronary calcium. Circulation. 2001;104:1682–7.

    CAS  PubMed  Google Scholar 

  39. Rumberger JA, Sheedy PF, Breen JF, Schwartz RS. Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis. J Am Coll Cardiol. 1997;29:1542–8.

    CAS  PubMed  Google Scholar 

  40. Budoff MJ, Diamond GA, Raggi P, Arad Y, Guerci AD, Callister TQ, Berman D. Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation. 2002;105:1791–6.

    PubMed  Google Scholar 

  41. Shavelle DM, Budoff MJ, LaMont DH, Shavelle RM, Kennedy JM, Brundage BH. Exercise testing and electron beam computed tomography in the evaluation of coronary artery disease. J Am Coll Cardiol. 2000;36:32–8.

    CAS  PubMed  Google Scholar 

  42. Kajinami K, Seki H, Takekoshi N, Mabuchi H. Noninvasive prediction of coronary atherosclerosis by quantification of coronary artery calcification using electron beam computed tomography: comparison with electrocardiographic and thallium exercise stress test results. J Am Coll Cardiol. 1995;26:1209–21.

    CAS  PubMed  Google Scholar 

  43. Lamont DH, Budoff MJ, Shavelle DM, Shavelle R, Brundage BH, Hagar JM. Coronary calcium scanning adds incremental value to patients with positive stress tests. Am Heart J. 2002;143(5):861–7.

    PubMed  Google Scholar 

  44. Kannel WB, Schatzkin A. Sudden death: lessons from subsets in population studies. J Am Coll Cardiol. 1985;5:141B–9.

    CAS  PubMed  Google Scholar 

  45. Raggi P. Coronary-calcium screening to improve risk stratification in primary prevention. J La State Med Soc. 2002;154:314–8.

    PubMed  Google Scholar 

  46. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157–66.

    CAS  PubMed  Google Scholar 

  47. Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol. 1992;69:729–32.

    CAS  PubMed  Google Scholar 

  48. Roberts WC, Jones AA. Quantitation of coronary arterial narrowing at necropsy in sudden coronary death: analysis of 31 patients and comparison with 25 control subjects. Am J Cardiol. 1979;44:39–45.

    CAS  PubMed  Google Scholar 

  49. Margolis JR, Chen JT, Kong Y, Peter RH, Behar VS, Kisslo JA. The diagnostic and prognostic significance of coronary artery calcification. A report of 800 cases. Radiology. 1980;137:609–16.

    CAS  PubMed  Google Scholar 

  50. Georgiou D, Budoff MJ, Kaufer E, Kennedy JM, Lu B, Brundage BH. Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol. 2001;38:105–10.

    CAS  PubMed  Google Scholar 

  51. Detrano R, Hsiai T, Wang S, Puentes G, Fallavollita J, Shields P, Stanford W, Wolfkiel C, Georgiou D, Budoff M, Reed J. Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol. 1996;27:285–90.

    CAS  PubMed  Google Scholar 

  52. Kennedy J, Shavelle R, Wang S, Budoff M, Detrano RC. Coronary calcium and standard risk factors in symptomatic patients referred for coronary angiography. Am Heart J. 1998;135:696–702.

    CAS  PubMed  Google Scholar 

  53. Keelan PC, Bielak LF, Ashai K, Jamjoum LS, Denktas AE, Rumberger JA, Sheedy IP, Peyser PA, Schwartz RS. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation. 2001;104:412–7.

    CAS  PubMed  Google Scholar 

  54. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333:1301–7.

    CAS  PubMed  Google Scholar 

  55. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36:1253–60.

    CAS  PubMed  Google Scholar 

  56. Wong ND, Hsu JC, Detrano RC, Diamond G, Eisenberg H, Gardin JM. Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol. 2000;86:495–8.

    CAS  PubMed  Google Scholar 

  57. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291:210–5.

    CAS  PubMed  Google Scholar 

  58. Raggi P, Cooil B, Callister TQ. Use of electron beam tomography data to develop models for prediction of hard coronary events. Am Heart J. 2001;141:375–82.

    CAS  PubMed  Google Scholar 

  59. Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, Chomka EV, Liu K. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107:2571–6.

    PubMed  Google Scholar 

  60. Arad Y, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary risk factors, and atherosclerotic cardiovascular disease events. The St. Francis Heart Study. J Am Coll Cardiol. 2005;46(1):158–65.

    CAS  PubMed  Google Scholar 

  61. Shaw LJ, Raggi P, Schisterman E, et al. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;28:826–33.

    Google Scholar 

  62. Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, Dragano N, Grönemeyer D, Seibel R, Kälsch H, Bröcker-Preuss M, Mann K, Siegrist J, Jöckel KH, Heinz Nixdorf Recall Study Investigative Group. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56:1397–406.

    PubMed  Google Scholar 

  63. Vliegenthart R, Oudkerk M, Hofman A, Oei HH, van Dijck W, van Rooij FJ, Witteman JC. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112:572–7.

    PubMed  Google Scholar 

  64. Hofman A, Oudkerk M, Witteman JC. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010;56(17):1407–14.

    PubMed  Google Scholar 

  65. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.

    CAS  PubMed  Google Scholar 

  66. Grundy SM. Coronary plaque as a replacement for age as a risk factor in global risk assessment. Am J Cardiol. 2001;88:8E–11.

    CAS  PubMed  Google Scholar 

  67. Budoff MJ, Nasir K, McClelland RL, Detrano R, Wong N, Blumenthal RS, Kondos GT, Kronmal RA. Coronary calcium predicts events better with absolute calcium scores than age-gender-race percentiles – the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2009;53:345–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. O’Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, Pohost GM, Shaw LJ, Weintraub WS, Winters Jr WL. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol. 2000;36:326–40.

    PubMed  Google Scholar 

  69. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Google Scholar 

  70. Smith Jr SC, Amsterdam E, Balady GJ, Bonow RO, Fletcher GF, Froelicher V, Heath G, Limacher MC, Maddahi J, Pryor D, Redberg RF, Roccella E, Ryan T, Smaha L, Wenger NK. Prevention Conference V: beyond secondary prevention: identifying the high-risk patient for primary prevention: tests for silent and inducible ischemia: Writing Group II. Circulation. 2000;101:E12–6.

    PubMed  Google Scholar 

  71. Mosca L, Appel LJ, Benjamin EJ, Berra K, Chandra-Strobos N, Fabunmi RP, Grady D, Haan CK, Hayes SN, Judelson DR, Keenan NL, McBride P, Oparil S, Ouyang P, Oz MC, Mendelsohn ME, Pasternak RC, Pinn VW, Robertson RM, Schenck-Gustafsson K, Sila CA, Smith Jr SC, Sopko G, Taylor AL, Walsh BW, Wenger NK, Williams CL. Evidence-based guidelines for cardiovascular disease prevention in women. Circulation. 2004;109:672–93.

    PubMed  Google Scholar 

  72. Rumberger JA, Behrenbeck T, Breen JF, Sheedy 2nd PF. Coronary calcification by electron beam computed tomography and obstructive coronary artery disease: a model for costs and effectiveness of diagnosis as compared with conventional cardiac testing methods. J Am Coll Cardiol. 1999;33:453–62.

    CAS  PubMed  Google Scholar 

  73. Nasir K, Redberg RF, Budoff MJ, Hui E, Post WS, Blumenthal RS. Utility of stress testing and coronary calcification measurement for detection of coronary artery disease in women. Arch Intern Med. 2004;164:1610–20.

    PubMed  Google Scholar 

  74. Budoff MJ, Shakooh S, Shavelle RM, Kim HT, French WJ. Electron beam tomography and angiography: sex differences. Am Heart J. 2002;143(5):877–82.

    PubMed  Google Scholar 

  75. Laudon DA, Vukov LF, Breen JF, Rumberger JA, Wollan PC, Sheedy 2nd PF. Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med. 1999;33:15–21.

    CAS  PubMed  Google Scholar 

  76. McLaughlin VV, Balogh T, Rich S. Utility of electron beam computed tomography to stratify patients presenting to the emergency room with chest pain. Am J Cardiol. 1999;84:327–8.

    CAS  PubMed  Google Scholar 

  77. Budoff MJ, Shavelle DM, Lamont DH, Kim HT, Akinwale P, Kennedy JM, Brundage BH. Usefulness of electron beam computed tomography scanning for distinguishing ischemic from nonischemic cardiomyopathy. J Am Coll Cardiol. 1998;32:1173–8.

    CAS  PubMed  Google Scholar 

  78. Greenland P, Abrams J, Aurigemma GP, Bond MG, Clark LT, Criqui MH, et al. Prevention Conference V: beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation. 2000;101(1):E16–22.

    CAS  PubMed  Google Scholar 

  79. Taylor AJ, Merz CN, Udelson JE. 34th Bethesda Conference: executive summary–can atherosclerosis imaging techniques improve the detection of patients at risk for ischemic heart disease? J Am Coll Cardiol. 2003;41(11):1860–2.

    PubMed  Google Scholar 

  80. Grundy SM, Cleeman JI, Merz CN, Brewer Jr HB, Clark LT, Hunninghake DB, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110(2):227–39.

    PubMed  Google Scholar 

  81. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, Hlatky MA, Hodgson JM, Kushner FG, Lauer MS, Shaw LJ, Smith Jr SC, Taylor AJ, Weintraub WS, Wenger NK. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:50–103.

    Google Scholar 

  82. Perk J, De Backer G, Gohlke H, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). Eur Heart J. 2012;33:1635–701.

    CAS  PubMed  Google Scholar 

  83. Nakanishi T, Ito K, Imazu M, Yamakido M. Evaluation of coronary artery stenoses using electron-beam CT and multiplanar reformation. J Comput Assist Tomogr. 1997;21:121–7.

    CAS  PubMed  Google Scholar 

  84. Achenbach S, Moshage W, Ropers D, Bachmann K. Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron beam CT of the coronary arteries. AJR Am J Roentgenol. 1998;170:895–9.

    CAS  PubMed  Google Scholar 

  85. Budoff MJ, Oudiz RJ, Zalace CP, Bakhsheshi H, Goldberg SL, French WJ, Rami TG, Brundage BH. Intravenous three dimensional coronary angiography using contrast enhanced electron beam computed tomography. Am J Cardiol. 1999;83:840–5.

    CAS  PubMed  Google Scholar 

  86. Reddy GP, Chernoff DM, Adams JR, Higgins CB. Coronary artery stenoses: assessment with contrast-enhanced electron-beam CT and axial reconstructions. Radiology. 1998;208:167–72.

    CAS  PubMed  Google Scholar 

  87. Achenbach S, Moshage W, Ropers D, Nossen J, Daniel WG. Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions. N Engl J Med. 1998;339:1964–71.

    CAS  PubMed  Google Scholar 

  88. Moshage WE, Achenbach S, Seese B, Bachmann K, Kirchgeorg M. Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology. 1995;196:707–14.

    CAS  PubMed  Google Scholar 

  89. Achenbach S, Moshage W, Ropers D, Bachmann K. Comparison of vessel diameters in electron beam tomography and quantitative coronary angiography. Int J Card Imaging. 1998;14:1–9.

    CAS  PubMed  Google Scholar 

  90. Budoff MJ, Lu B, Shinbane JS, Chen L, Child J, Carson S, Mao SS. Methodology for improved detection of coronary stenoses with computed tomographic angiography. Am Heart J. 2004;148(6):1085–90.

    PubMed  Google Scholar 

  91. Leber AW, Knez A, Becker A, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaque: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004;43:1241–7.

    PubMed  Google Scholar 

  92. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    PubMed  Google Scholar 

  93. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    CAS  PubMed  Google Scholar 

  94. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.

    PubMed  Google Scholar 

  95. Bateman TM, Gray RJ, Whiting JS, Matloff JM, Berman DS, Forrester JS. Cine computed tomographic evaluation of aortocoronary bypass graft patency. J Am Coll Cardiol. 1986;8:693–8.

    CAS  PubMed  Google Scholar 

  96. Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K. Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol. 1997;79:856–61.

    CAS  PubMed  Google Scholar 

  97. Ha JW, Cho SY, Shim WH, Chung N, Jang Y, Lee HM, Choe KO, Chung WJ, Choi SH, Yoo KJ, Kang MS. Noninvasive evaluation of coronary artery bypass graft patency using three-dimensional angiography obtained with contrast-enhanced electron beam CT. AJR Am J Roentgenol. 1999;172:1055–9.

    CAS  PubMed  Google Scholar 

  98. Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen J. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol. 2004;44(6):1224–9.

    PubMed  Google Scholar 

  99. Pump H, Moehlenkamp S, Sehnert C, Schimpf SS, Erbel R, Seibel RM, Groenemeyer DH. Electron-beam CT in the noninvasive assessment of coronary stent patency. Acad Radiol. 1998;5:858–62.

    CAS  PubMed  Google Scholar 

  100. Lu B, Dai R, Bai H, He S, Jing B, Zhuang N, Gao R, Chen J, Budoff MJ. Detection and analysis of intracoronary artery stent after PTCA using contrast-enhanced three-dimensional electron beam tomography. J Invasive Cardiol. 2000;12:1–6.

    CAS  PubMed  Google Scholar 

  101. Abdelkarim MJ, Ahmadi N, Gopal A, Hamirani Y, Karlsberg RP, Budoff MJ. Noninvasive quantitative evaluation of coronary artery stent patency using 64-row multidetector computed tomography. J Cardiovasc Comput Tomogr. 2010;4(1):29–37.

    PubMed  Google Scholar 

  102. Nissen SE, Gurley JC, Grines CL, Booth DC, McClure R, Berk M, Fischer C, DeMaria AN. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation. 1991;84:1087–99.

    CAS  PubMed  Google Scholar 

  103. Mintz GS, Painter JA, Pichard AD, Kent KM, Satler LF, Popma JJ, Chuang YC, Bucher TA, Sokolowicz LE, Leon MB. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995;25:1479–85.

    CAS  PubMed  Google Scholar 

  104. Schmermund A, Baumgart D, Adamzik M, Ge J, Gronemeyer D, Seibel R, Sehnert C, Gorge G, Haude M, Erbel R. Comparison of electron-beam computed tomography and intracoronary ultrasound in detecting calcified and noncalcified plaques in patients with acute coronary syndromes and no or minimal to moderate angiographic coronary artery disease. Am J Cardiol. 1998;81:141–6.

    CAS  PubMed  Google Scholar 

  105. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, Pohle K, Baum U, Anders K, Jang IK, Daniel WG, Brady TJ. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109:14–7.

    PubMed  Google Scholar 

  106. Achenbach S, Giesler T, Ropers D, Ulzheimer S, Derlien H, Schulte C, Wenkel E, Moshage W, Bautz W, Daniel WG, Kalender WA, Baum U. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation. 2001;103:2535–8.

    CAS  PubMed  Google Scholar 

  107. Villines TC, Hulten EA, Shaw LJ, Goyal M, Dunning A, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng VY, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Lin FY, Maffei E, Raff GL, Min JK, CONFIRM Registry Investigators. Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol. 2011;58(24):2533–40.

    PubMed  Google Scholar 

  108. Knollmann FD, Hidajat N, Felix R. CTA of the coronary arteries: comparison of radiation exposure with EBCT and multi-slice detector CT. Radiology. 2000;217:364–5.

    Google Scholar 

  109. Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation. 2003;107:917–22.

    PubMed  Google Scholar 

  110. Flohr TG, Schoepf UJ, Kuettner A, Halliburton S, Bruder H, Suess C, Schmidt B, Hofmann L, Yucel EK, Schaller S, Ohnesorge BM. Advances in cardiac imaging with 16-section CT systems. Acad Radiol. 2003;10(4):386–401.

    PubMed  Google Scholar 

  111. Trabold T, Buchgeister M, Kuttner A, Heuschmid M, Kopp AF, Schroder S, Claussen CD. Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo. 2003;175:1051–5.

    CAS  PubMed  Google Scholar 

  112. Choi TY, Malpeso J, Li D, Sourayanezhad S, Budoff MJ. Radiation dose reduction with increasing utilization of prospective gating in 64-multidetector cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2011;5:264–70.

    PubMed  Google Scholar 

  113. Ropers D, Moshage W, Daniel WG, Jessl J, Gottwik M, Achenbach S. Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol. 2001;87:193–7.

    CAS  PubMed  Google Scholar 

  114. Baik HK, Budoff MJ, Lane KL, Bakhsheshi H, Brundage BH. Accurate measures of left ventricular ejection fraction using electron beam tomography: a comparison with radionuclide angiography, and cine angiography. Int J Card Imaging. 2000;16:391–8.

    CAS  PubMed  Google Scholar 

  115. Rich S, Chomka EV, Stagl R, Shanes JG, Kondos GT, Brundage BH. Determination of left ventricular ejection fraction using ultrafast computed tomography. Am Heart J. 1986;112:392–6.

    CAS  PubMed  Google Scholar 

  116. Rumberger JA, Behrenbeck T, Bell MR, Breen JF, Johnston DL, Holmes Jr DR, Enriquez-Sarano M. Determination of ventricular ejection fraction: a comparison of available imaging methods. The Cardiovascular Imaging Working Group. Mayo Clin Proc. 1997;72:860–70.

    CAS  PubMed  Google Scholar 

  117. Reiter SJ, Rumberger JA, Feiring AJ, Stanford W, Marcus ML. Precision of measurements of right and left ventricular volume by cine computed tomography. Circulation. 1986;74:890–900.

    CAS  PubMed  Google Scholar 

  118. Schmermund A, Rensing BJ, Sheedy PF, Rumberger JA. Reproducibility of right and left ventricular volume measurements by electron-beam CT in patients with congestive heart failure. Int J Card Imaging. 1998;14:201–9.

    CAS  PubMed  Google Scholar 

  119. Feiring AJ, Rumberger JA, Reiter SJ, Skorton DJ, Collins SM, Lipton MJ, Higgins CB, Ell S, Marcus ML. Determination of left ventricular mass in dogs with rapid-acquisition cardiac computed tomographic scanning. Circulation. 1985;72:1355–64.

    CAS  PubMed  Google Scholar 

  120. Mousseaux E, Beygui F, Fornes P, Chatellier G, Hagege A, Desnos M, Lecomte D, Gaux JC. Determination of left ventricular mass with electron beam computed tomography in deformed, hypertrophic human hearts. Eur Heart J. 1994;15:832–41.

    CAS  PubMed  Google Scholar 

  121. Feiring AJ, Rumberger JA. Ultrafast computed tomography analysis of regional radius-to-wall thickness ratios in normal and volume-overloaded human left ventricle. Circulation. 1992;85:1423–32.

    CAS  PubMed  Google Scholar 

  122. Gerber TC, Schmermund A, Reed JE, Rumberger JA, Sheedy PF, Gibbons RJ, Holmes DR, Behrenbeck T. Use of a new myocardial centroid for measurement of regional myocardial dysfunction by electron beam computed tomography: comparison with technetium-99m sestamibi infarct size quantification. Invest Radiol. 2001;36:193–203.

    CAS  PubMed  Google Scholar 

  123. Rumberger JA, Weiss RM, Feiring AJ, et al. Patterns of regional diastolic function in the normal human left ventricle: an ultrafast computed tomographic study. J Am Coll Cardiol. 1989;14(1):119–26.

    CAS  PubMed  Google Scholar 

  124. Gerber TC, Behrenbeck T, Allison T, Mullan BP, Rumberger JA, Gibbons RJ. Comparison of measurement of left ventricular ejection fraction by Tc-99m sestamibi first-pass angiography with electron beam computed tomography in patients with anterior wall acute myocardial infarction. Am J Cardiol. 1999;83:1022–6.

    CAS  PubMed  Google Scholar 

  125. Budoff MJ, Gillespie R, Georgiou D, Narahara KA, French WJ, Mena I, Brundage BH. Comparison of exercise electron beam computed tomography and sestamibi in the evaluation of coronary artery disease. Am J Cardiol. 1998;81:682–7.

    CAS  PubMed  Google Scholar 

  126. Hattori Y, Imazu M, Yamabe T, Yamakido M, Nakanishi T, Ito K. Comparative study of dobutamine stress electron-beam computed tomography and exercise thallium scintigraphy in the diagnosis of patients with suspected coronary artery disease. Jpn Circ J. 1998;62(2):83–90.

    CAS  PubMed  Google Scholar 

  127. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, Cecchi F, Maron BJ. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348:295–303.

    PubMed  Google Scholar 

  128. Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol. 1995;26:1699–708.

    CAS  PubMed  Google Scholar 

  129. Juergens KU, Wessling J, Fallenberg EM, Monnig G, Wichter T, Fischbach R. Multislice cardiac spiral CT evaluation of atypical hypertrophic cardiomyopathy with a calcified left ventricular thrombus. J Comput Assist Tomogr. 2000;24:688–90.

    CAS  PubMed  Google Scholar 

  130. Funabashi N, Yoshida K, Komuro I. Thinned myocardial fibrosis with thrombus in the dilated form of hypertrophic cardiomyopathy demonstrated by multislice computed tomography. Heart. 2003;89:858.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Schulz-Menger J, Strohm O, Waigand J, Uhlich F, Dietz R, Friedrich MG. The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation. 2000;101:1764–6.

    CAS  PubMed  Google Scholar 

  132. Dery R, Lipton MJ, Garrett JS, Abbott J, Higgins CB, Schienman MM. Cine-computed tomography of arrhythmogenic right ventricular dysplasia. J Comput Assist Tomogr. 1986;10:120–3.

    CAS  PubMed  Google Scholar 

  133. Corrado D, Thiene G, Nava A, Rossi L, Pennelli N. Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med. 1990;89:588–96.

    CAS  PubMed  Google Scholar 

  134. di Cesare E. MRI assessment of right ventricular dysplasia. Eur Radiol. 2003;13:1387–93.

    PubMed  Google Scholar 

  135. Hamada S, Takamiya M, Ohe T, Ueda H. Arrhythmogenic right ventricular dysplasia: evaluation with electron-beam CT. Radiology. 1993;187:723–7.

    CAS  PubMed  Google Scholar 

  136. Tada H, Shimizu W, Ohe T, Hamada S, Kurita T, Aihara N, Kamakura S, Takamiya M, Shimomura K. Usefulness of electron-beam computed tomography in arrhythmogenic right ventricular dysplasia. Relationship to electrophysiological abnormalities and left ventricular involvement. Circulation. 1996;94:437–44.

    CAS  PubMed  Google Scholar 

  137. Lu B, Dai RP, Jing BL, Bai H, He S, Zhuang N, Sun ZH, Budoff MJ. Electron beam tomography with three-dimensional reconstruction in the diagnosis of aortic diseases. J Cardiovasc Surg (Torino). 2000;41:659–68.

    CAS  Google Scholar 

  138. Stanford W. Computed tomography in the diagnosis of pericardial disease. In: Brundage BH, editor. Comparative cardiac imaging. Rockville: Aspen Publishers; 1990. p. 451–7.

    Google Scholar 

  139. Stanford W, Rooholamini SA, Galvin JR. Assessment of intracardiac masses and extracardiac abnormalities by ultrafast computed tomography. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, editors. Cardiac imaging. Philadelphia: W B Saunders; 1991. p. 703.

    Google Scholar 

  140. Rooholamini SA, Stanford W. Ultrafast computed tomography in the diagnosis of aortic aneurysms and dissections. In: Stanford W, Rumberger J, editors. Ultrafast computed tomography in cardiac imaging: principles and practice. Mount Kisco: Futura Publishing; 1992. p. 287–310.

    Google Scholar 

  141. Rich S, Levitsky S, Brundage BH. Pulmonary hypertension from chronic pulmonary thromboembolism. Ann Intern Med. 1988;108(3):425–34.

    CAS  PubMed  Google Scholar 

  142. Moser KM, Auger WR, Fedullo PF. Chronic major-vessel thromboembolic pulmonary hypertension. Circulation. 1990;81(6):1735–43.

    CAS  PubMed  Google Scholar 

  143. Galvin JR, Gingrich RD, Hoffman E, Kao SC, Stern EJ, Stanford W. Ultrafast computed tomography of the chest. Radiol Clin North Am. 1994;32:775–93.

    CAS  PubMed  Google Scholar 

  144. Stanford W, Reiners TJ, Thompson BH, et al. Contrast enhanced thin slice ultrafast computed tomography for the detection of small pulmonary emboli in the pig. Invest Radiol. 1994;29:184–7.

    CAS  PubMed  Google Scholar 

  145. Kuriyama K, Gamsu G, Stern RG, et al. CT determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol. 1984;19(1):16–22.

    CAS  PubMed  Google Scholar 

  146. Farmer DW, Lipton MJ, Webb WR, Ringertz H, Higgins CB. Computed tomography in congenital heart disease. J Comput Assist Tomogr. 1984;8:677–87.

    CAS  PubMed  Google Scholar 

  147. Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA. 1996;276:199–204.

    CAS  PubMed  Google Scholar 

  148. Frescura C, Basso C, Thiene G, Corrado D, Pennelli T, Angelini A, Daliento L. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998;29:689–95.

    CAS  PubMed  Google Scholar 

  149. Li W, Ferrett C, Henein M. Images in cardiovascular medicine. Anomalous coronary arteries by electron beam angiography. Circulation. 2003;107(20):2630.

    PubMed  Google Scholar 

  150. Post JC, van Rossum AC, Bronzwaer JG, de Cock CC, Hofman MB, Valk J, Visser CA. Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation. 1995;92:3163–71.

    CAS  PubMed  Google Scholar 

  151. Fernandes F, Alam M, Smith S, Khaja F. The role of transesophageal echocardiography in identifying anomalous coronary arteries. Circulation. 1993;88:2532–40.

    CAS  PubMed  Google Scholar 

  152. Kersting-Sommerhoff B, Higgins CB. Magnetic resonance of congenital heart disease. In: Brundage BH, editor. Comparative cardiac imaging. Rockville: Aspen Publishers; 1990. p. 493–502.

    Google Scholar 

  153. Aboulhosn J, Shavelle DM, Budoff M, Criley JM. Electron beam angiography in adults with congenital heart disease. Catheter Cardiovasc Interv. 2004;27(12):702.

    Google Scholar 

  154. Kawano T, Ishii M, Takagi J, Maeno Y, Eto G, Sugahara Y, Toshima T, Yasunaga H, Kawara T, Todo K, Kato H. Three-dimensional helical computed tomographic angiography in neonates and infants with complex congenital heart disease. Am Heart J. 2000;139:654–60.

    CAS  PubMed  Google Scholar 

  155. Garrett J, Jaschke W, Aherne T, et al. Quantitation of intracardiac shunts by cine-CT. J Comput Assist Tomogr. 1988;12(1):82–7.

    CAS  PubMed  Google Scholar 

  156. Choi BW, Park YH, Choi JY, Choi BI, Kim MJ, Ryu SJ, Lee JK, Sul JH, Lee SK, Cho BK, Choe KO. Using electron beam CT to evaluate conotruncal anomalies in pediatric and adult patients. AJR Am J Roentgenol. 2001;177:1045–9.

    CAS  PubMed  Google Scholar 

  157. Chen SJ, Li YW, Wang JK, Chiu IS, Su CT, Hsu JC, Lue HC. Three-dimensional reconstruction of abnormal ventriculoarterial relationship by electron beam CT. J Comput Assist Tomogr. 1998;22:560–8.

    CAS  PubMed  Google Scholar 

  158. Lim C, Kim WH, Kim SC, Lee JY, Kim SJ, Kim YM. Truncus arteriosus with coarctation of persistent fifth aortic arch. Ann Thorac Surg. 2002;74:1702–4.

    PubMed  Google Scholar 

  159. Taneja K, Sharma S, Kumar K, Rajani M. Comparison of computed tomography and cineangiography in the demonstration of central pulmonary arteries in cyanotic congenital heart disease. Cardiovasc Intervent Radiol. 1996;19:97–100.

    CAS  PubMed  Google Scholar 

  160. Choe KO, Hong YK, Kim HJ, Joo SH, Cho BK, Chang BC, Cho SY, Shim WH, Chung NS. The use of high-resolution computed tomography in the evaluation of pulmonary hemodynamics in patients with congenital heart disease: in pulmonary vessels larger than 1 mm in diameter. Pediatr Cardiol. 2000;21:202–10.

    CAS  PubMed  Google Scholar 

  161. Chen SJ, Wang JK, Li YW, Chiu IS, Su CT, Lue HC. Validation of pulmonary venous obstruction by electron beam computed tomography in children with congenital heart disease. Am J Cardiol. 2001;87:589–93.

    CAS  PubMed  Google Scholar 

  162. Haramati LB, Glickstein JS, Issenberg HJ, Haramati N, Crooke GA. MR imaging and CT of vascular anomalies and connections in patients with congenital heart disease: significance in surgical planning. Radiographics. 2002;22:337–49.

    PubMed  Google Scholar 

  163. Kaemmerer H, Stern H, Fratz S, Prokop M, Schwaiger M, Hess J. Imaging in adults with congenital cardiac disease (ACCD). Thorac Cardiovasc Surg. 2000;48:328–35.

    CAS  PubMed  Google Scholar 

  164. Becker C, Soppa C, Fink U, Haubner M, Muller-Lisse U, Englmeier KH, Buhlmeyer K, Reiser M. Spiral CT angiography and 3D reconstruction in patients with aortic coarctation. Eur Radiol. 1997;7:1473–7.

    CAS  PubMed  Google Scholar 

  165. Gerber TC, Sheedy PF, Bell MR, Hayes DL, Rumberger JA, Behrenbeck T, Holmes Jr DR, Schwartz RS. Evaluation of the coronary venous system using electron beam computed tomography. Int J Cardiovasc Imaging. 2001;17:65–75.

    CAS  PubMed  Google Scholar 

  166. Schaffler GJ, Groell R, Peichel KH, Rienmuller R. Imaging the coronary venous drainage system using electron-beam CT. Surg Radiol Anat. 2000;22:35–9.

    CAS  PubMed  Google Scholar 

  167. Shinbane JS, Girsky MJ, Mao S, Budoff MJ. Thebesian valve imaging with electron beam CT angiography: implications for resynchronization therapy. Pacing Clin Electrophysiol. 2004;27(11):1566–7.

    PubMed  Google Scholar 

  168. Chugh SS, Blackshear JL, Shen WK, Hammill SC, Gersh BJ. Epidemiology and natural history of atrial fibrillation: clinical implications. J Am Coll Cardiol. 2001;37:371–8.

    CAS  PubMed  Google Scholar 

  169. Schwartzman D, Kuck KH. Anatomy-guided linear atrial lesions for radiofrequency catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol. 1998;21:1959–78.

    CAS  PubMed  Google Scholar 

  170. Yang M, Akbari H, Reddy GP, Higgins CB. Identification of pulmonary vein stenosis after radiofrequency ablation for atrial fibrillation using MRI. J Comput Assist Tomogr. 2001;25:34–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Budoff MD, FACC, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Budoff, M.J. (2015). Computed Tomograph Cardiovascular Imaging. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics