Skip to main content

Malignant Mesothelioma: Molecular Markers

  • Chapter
  • First Online:
Occupational Cancers

Abstract

During the last few years, knowledge of the molecular features has increased in neoplasias in general but especially in certain malignant diseases like malignant mesothelioma (MM) which have very high mortality. This knowledge has helped to identify biomarkers that not only facilitate early and differential diagnosis but also assist with the evaluation of the prognosis and effectiveness of the treatment provided. Similarly, these advances have also shed light on the etiology of the diseases, for example, about exposures to different environmental factors. Importantly, novel and more sensitive methods have made it possible to detect these biomarkers in effusions (pleural fluid), plasma, serum, urine, and sputum as a source of the malignant cells to achieve a fast, early, and less expensive diagnosis as well as follow-up of the disease without the need for tissue from the primary tumor for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiainen M, Tammilehto L, Mattson K, Knuutila S. Nonrandom chromosomal abnormalities in malignant pleural mesothelioma. Cancer Genet Cytogenet. 1988;33:251–74.

    CAS  PubMed  Google Scholar 

  2. Hagemeijer A, Versnel MA, Van Drunen E, et al. Cytogenetic analysis of mesothelioma. Cancer Genet Cytogenet. 1990;47:1–28.

    CAS  PubMed  Google Scholar 

  3. Factor RE, Dal Cin P, Fletcher JA, Cibas ES. Cytogenetics and fluorescence in situ hybridization as adjuncts to cytology in the diagnosis of malignant mesothelioma. Cancer. 2009;117:247–53.

    PubMed  Google Scholar 

  4. Chiosea S, Krasinskas A, Cagle PT, et al. Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Mod Pathol. 2008;21:742–7.

    CAS  PubMed  Google Scholar 

  5. Kettunen E, Salmenkivi K, Vuopala K, et al. Copy number gains on 5p15, 6p11-q11, 7p12, and 8q24 are rare in sputum cells of individuals at high risk of lung cancer. Lung Cancer. 2006;54:169–76.

    PubMed  Google Scholar 

  6. Björkqvist AM, Wolf M, Nordling S, et al. Deletions at 14q in malignant mesothelioma detected by microsatellite marker analysis. Br J Cancer. 1999;81:1111–5.

    PubMed Central  PubMed  Google Scholar 

  7. Pylkkänen L, Sainio M, Ollikainen T, et al. Concurrent LOH at multiple loci in human malignant mesothelioma with preferential loss of NF2 gene region. Oncol Rep. 2002;9:955–9.

    PubMed  Google Scholar 

  8. Lindholm P, Salmenkivi K, Vauhkonen H, et al. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res. 2007;119:46–52.

    CAS  PubMed  Google Scholar 

  9. Borze I, Guled M, Musse S, et al. MicroRNA microarrays on archive bone marrow core biopsies of leukemias–method validation. Leuk Res. 2011;35:188–95.

    CAS  PubMed  Google Scholar 

  10. Caldas J, Gehlenborg N, Kettunen E, et al. Data-driven information retrieval in heterogeneous collections of transcriptomics data links SIM2s to malignant pleural mesothelioma. Bioinformatics. 2012;28(2):246–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Ribotta M, Roseo F, Salvio M, et al. Recurrent chromosome 6 abnormalities in malignant mesothelioma. Monaldi Arch Chest Dis. 1998;53:228–35.

    CAS  PubMed  Google Scholar 

  12. Mitelman F, Johansson B, Mertens F, editors. Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman; 2007.

  13. Nymark P, Kettunen E, Knuutila S. Tumors of the lung. In: Heim S, Mitelman F, editors. Cancer cytogenetics. 3rd ed. Hoboken: Wiley; 2009. p. 415–28.

    Google Scholar 

  14. Björkqvist A-M, Tammilehto L, Nordling S, et al. Comparison of DNA copy number changes in malignant mesothelioma, adenocarcinoma and large-cell anaplastic carcinoma of the lung. Br J Cancer. 1998;77:260–9.

    PubMed  Google Scholar 

  15. Simon F, Johnen G, Krismann M, Muller K-M. Chromosomal alterations in early stages of malignant mesotheliomas. Virchows Arch. 2005;447:762–7.

    PubMed  Google Scholar 

  16. Pei J, Kruger WD, Testa JR. High-resolution analysis of 9p loss in human cancer cells using single nucleotide polymorphism-based mapping arrays. Cancer Genet Cytogenet. 2006;170:65–8.

    CAS  PubMed  Google Scholar 

  17. Illei PB, Rusch VW, Zakowski MF, Ladanyi M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res. 2003;9:2108–13.

    CAS  PubMed  Google Scholar 

  18. Xio S, Li D, Vijg J, et al. Codeletion of p15 and p16 in primary malignant mesothelioma. Oncogene. 1995;11:511–5.

    CAS  PubMed  Google Scholar 

  19. Prins JB, Williamson KA, Kamp MM, et al. The gene for the cyclin-dependent-kinase-4 inhibitor, CDKN2A, is preferentially deleted in malignant mesothelioma. Int J Cancer. 1998;75:649–53.

    CAS  PubMed  Google Scholar 

  20. Cheng JQ, Jhanwar SC, Klein WM, et al. p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res. 1994;54:5547–51.

    CAS  PubMed  Google Scholar 

  21. Krasinskas AM, Bartlett DL, Cieply K, Dacic S. CDKN2A and MTAP deletions in peritoneal mesotheliomas are correlated with loss of p16 protein expression and poor survival. Mod Pathol. 2010;23:531–8.

    CAS  PubMed  Google Scholar 

  22. Dacic S, Kothmaier H, Land S, et al. Prognostic significance of p16/cdkn2a loss in pleural malignant mesotheliomas. Virchows Arch. 2008;453:627–35.

    PubMed  Google Scholar 

  23. Reid A, de Klerk N, Ambrosini G, et al. The additional risk of malignant mesothelioma in former workers and residents of Wittenoom with benign pleural disease or asbestosis. Occup Environ Med. 2005;62:665–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ascoli V, Aalto Y, Carnovale-Scalzo C, et al. DNA copy number changes in familial malignant mesothelioma. Cancer Genet Cytogenet. 2001;127:80–2.

    CAS  PubMed  Google Scholar 

  25. Musti M, Cavone D, Aalto Y, et al. A cluster of familial malignant mesothelioma with del(9p) as the sole chromosomal anomaly. Cancer Genet Cytogenet. 2002;138:73–6.

    CAS  PubMed  Google Scholar 

  26. Pylkkänen L, Wolff H, Stjernvall T, et al. Reduced Fhit protein expression in human malignant mesothelioma. Virchows Arch. 2004;444:43–8.

    PubMed  Google Scholar 

  27. Tammilehto L, Tuomi T, Tiainen M, et al. Malignant mesothelioma: clinical characteristics, asbestos mineralogy and chromosomal abnormalities of 41 patients. Eur J Cancer. 1992;28A:1373–9.

    CAS  PubMed  Google Scholar 

  28. Jean D, Thomas E, Manie E, et al. Syntenic relationships between genomic profiles of fiber-induced murine and human malignant mesothelioma. Am J Pathol. 2011;178:881–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Krismann M, Müller K, Jaworska M, Johnen G. Molecular cytogenetic differences between histological subtypes of malignant mesotheliomas: DNA cytometry and comparative genomic hybridization of 90 cases. J Pathol. 2002;197:363–71.

    CAS  PubMed  Google Scholar 

  30. Sugarbaker DJ, Richards WG, Gordon GJ, et al. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci U S A. 2008;105:3521–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Bueno R, De Rienzo A, Dong L, et al. Second generation sequencing of the mesothelioma tumor genome. PLoS ONE. 2010;5:e10612.

    PubMed Central  PubMed  Google Scholar 

  32. Sekido Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci. 2010;101:1–6.

    CAS  PubMed  Google Scholar 

  33. Murthy SS, Testa JR. Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J Cell Physiol. 1999;180:150–7.

    CAS  PubMed  Google Scholar 

  34. Cortese JF, Gowda AL, Wali A, et al. Common EGFR mutations conferring sensitivity to gefitinib in lung adenocarcinoma are not prevalent in human malignant mesothelioma. Int J Cancer. 2006;118:521–2.

    CAS  PubMed  Google Scholar 

  35. Onofre FB, Onofre AS, Pomjanski N, et al. 9p21 Deletion in the diagnosis of malignant mesothelioma in serous effusions additional to immunocytochemistry, DNA-ICM, and AgNOR analysis. Cancer. 2008;114:204–15.

    PubMed  Google Scholar 

  36. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    CAS  PubMed  Google Scholar 

  37. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    CAS  PubMed  Google Scholar 

  38. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    CAS  PubMed  Google Scholar 

  39. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Fabbri M, Croce CM, Calin GA. MicroRNAs. Cancer J. 2008;14:1–6.

    CAS  PubMed  Google Scholar 

  41. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Guled M, Lahti L, Lindholm PM, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer. 2009;48:615–23.

    CAS  PubMed  Google Scholar 

  43. Busacca S, Germano S, De Cecco L, et al. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol. 2010;42:312–9.

    CAS  PubMed  Google Scholar 

  44. Gee GV, Koestler DC, Christensen BC, et al. Downregulated microRNAs in the differential diagnosis of malignant pleural mesothelioma. Int J Cancer. 2010;127:2859–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Benjamin H, Lebanony D, Rosenwald S, et al. A diagnostic assay based on microRNA expression accurately identifies malignant pleural mesothelioma. J Mol Diagn. 2010;12:771–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ivanov SV, Goparaju CM, Lopez P, et al. Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem. 2010;285:22809–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Balatti V, Maniero S, Ferracin M, et al. MicroRNAs dysregulation in human malignant pleural mesothelioma. J Thorac Oncol. 2011;6:844–51.

    PubMed  Google Scholar 

  48. Santarelli L, Strafella E, Staffolani S, et al. Association of miR-126 with soluble mesothelin-related peptides, a marker for malignant mesothelioma. PLoS ONE. 2011;6:e18232.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Pass HI, Goparaju C, Ivanov S, et al. hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. Cancer Res. 2010;70:1916–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Goto Y, Shinjo K, Kondo Y, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res. 2009;69:9073–82.

    CAS  PubMed  Google Scholar 

  51. Paik PK, Krug LM. Histone deacetylase inhibitors in malignant pleural mesothelioma: preclinical rationale and clinical trials. J Thorac Oncol. 2010;5:275–9.

    PubMed Central  PubMed  Google Scholar 

  52. Symanowski J, Vogelzang N, Zawel L, et al. A histone deacetylase inhibitor LBH589 downregulates XIAP in mesothelioma cell lines which is likely responsible for increased apoptosis with TRAIL. J Thorac Oncol. 2009;4:149–60.

    PubMed  Google Scholar 

  53. Christensen BC, Marsit CJ, Houseman EA, et al. Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res. 2009;69:6315–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5:e1000602.

    PubMed Central  PubMed  Google Scholar 

  55. Tsou JA, Galler JS, Wali A, et al. DNA methylation profile of 28 potential marker loci in malignant mesothelioma. Lung Cancer. 2007;58:220–30.

    PubMed Central  PubMed  Google Scholar 

  56. Wong L, Zhou J, Anderson D, Kratzke R. Inactivation of p16INK4a expression in malignant mesothelioma by methylation. Lung Cancer. 2002;38:131–6.

    PubMed  Google Scholar 

  57. Tsou JA, Shen LY, Siegmund KD, et al. Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer. 2005;47:193–204.

    PubMed  Google Scholar 

  58. Suzuki M, Toyooka S, Shivapurkar N, et al. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection. Oncogene. 2005;24:1302–8.

    CAS  PubMed  Google Scholar 

  59. Destro A, Ceresoli GL, Baryshnikova E, et al. Gene methylation in pleural mesothelioma: correlations with clinico-pathological features and patient’s follow-up. Lung Cancer. 2008;59:369–76.

    PubMed  Google Scholar 

  60. Christensen BC, Godleski JJ, Marsit CJ, et al. Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. Carcinogenesis. 2008;29:1555–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kohno H, Amatya VJ, Takeshima Y, et al. Aberrant promoter methylation of WIF-1 and SFRP1, 2, 4 genes in mesothelioma. Oncol Rep. 2010;24:423–31.

    CAS  PubMed  Google Scholar 

  62. Christensen B, Houseman E, Godleski J, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. 2009;69:227–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Christensen B, Houseman E, Poage G, et al. Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. Cancer Res. 2010;70:5686–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Fischer JR, Ohnmacht U, Rieger N, et al. Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer. 2006;54:109–16.

    PubMed  Google Scholar 

  65. Toyooka S, Pass HI, Shivapurkar N, et al. Aberrant methylation and Simian virus 40 Tag sequences in malignant mesothelioma. Cancer Res. 2001;61:5727–30.

    CAS  PubMed  Google Scholar 

  66. Gray SG, Fennell DA, Mutti L, O’Byrne KJ. In arrayed ranks: array technology in the study of mesothelioma. J Thorac Oncol. 2009;4:411–25.

    PubMed  Google Scholar 

  67. Ombretta M, Alfonso C, Erika M, et al. A review of transcriptome studies combined with data mining reveals novel potential markers of malignant pleural mesothelioma. Mutat Res. 2011;750:132–40.

    Google Scholar 

  68. Crispi S, Calogero RA, Santini M, et al. Global gene expression profiling of human pleural mesotheliomas: identification of matrix metalloproteinase 14 (MMP-14) as potential tumour target. PLoS ONE. 2009;4:e7016.

    PubMed Central  PubMed  Google Scholar 

  69. Roe OD, Anderssen E, Sandeck H, et al. Malignant pleural mesothelioma: genome-wide expression patterns reflecting general resistance mechanisms and a proposal of novel targets. Lung Cancer. 2010;67:57–68.

    PubMed  Google Scholar 

  70. Singhal S, Wiewrodt R, Malden LD, et al. Gene expression profiling of malignant mesothelioma. Clin Cancer Res. 2003;9:3080–97.

    CAS  PubMed  Google Scholar 

  71. Kettunen E, Nissén AM, Ollikainen T, et al. Gene expression profiling of malignant mesothelioma cell lines: cDNA array study. Int J Cancer. 2001;91:492–6.

    CAS  PubMed  Google Scholar 

  72. Kettunen E, Nicholson AG, Nagy B, et al. L1CAM, INP10, P-cadherin, tPA and ITGB4 over-expression in malignant pleural mesotheliomas revealed by combined use of cDNA and tissue microarray. Carcinogenesis. 2005;26:17–25.

    CAS  PubMed  Google Scholar 

  73. Wali A, Morin PJ, Hough CD, et al. Identification of intelectin overexpression in malignant pleural mesothelioma by serial analysis of gene expression (SAGE). Lung Cancer. 2005;48:19–29.

    PubMed  Google Scholar 

  74. Gordon G, Jensen R, Hsiao L, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62:4963–7.

    CAS  PubMed  Google Scholar 

  75. Holloway AJ, Diyagama DS, Opeskin K, et al. A molecular diagnostic test for distinguishing lung adenocarcinoma from malignant mesothelioma using cells collected from pleural effusions. Clin Cancer Res. 2006;12:5129–35.

    CAS  PubMed  Google Scholar 

  76. Gordon GJ, Rockwell GN, Godfrey PA, et al. Validation of genomics-based prognostic tests in malignant pleural mesothelioma. Clin Cancer Res. 2005;11:4406–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Gordon GJ, Dong L, Yeap BY, et al. Four-gene expression ratio test for survival in patients undergoing surgery for mesothelioma. J Natl Cancer Inst. 2009;101:678–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Lopez-Rios F, Chuai S, Flores R, et al. Global gene expression profiling of pleural mesotheliomas: overexpression of Aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res. 2006;66:2970–9.

    CAS  PubMed  Google Scholar 

  79. Pass HI, Liu Z, Wali A, et al. Gene expression profiles predict survival and progression of pleural mesothelioma. Clin Cancer Res. 2004;10:849–59.

    CAS  PubMed  Google Scholar 

  80. Mohr S, Keith G, Galateau-Salle F, Icard P, Rihn B. Cell protection, resistance and invasiveness of two malignant mesotheliomas as assessed by 10 K-microarray. Biochim Biophys Acta. 2004;1688:43–60.

    CAS  PubMed  Google Scholar 

  81. Hoang C, D’Cunha J, Kratzke M, et al. Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest. 2004;125:1843–52.

    CAS  PubMed  Google Scholar 

  82. Sun X, Wei L, Liden J, et al. Molecular characterization of tumour heterogeneity and malignant mesothelioma cell differentiation by gene profiling. J Pathol. 2005;207:91–101.

    CAS  PubMed  Google Scholar 

  83. Romagnoli S, Fasoli E, Vaira V, et al. Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis. Am J Pathol. 2009;174:762–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Borczuk A, Cappellini G, Kim H, et al. Molecular profiling of malignant peritoneal mesothelioma identifies the ubiquitin-proteasome pathway as a therapeutic target in poor prognosis tumors. Oncogene. 2007;26:610–7.

    CAS  PubMed  Google Scholar 

  85. Ruosaari S, Hienonen-Kempas T, Puustinen A, et al. Pathways affected by asbestos exposure in normal and tumour tissue of lung cancer patients. BMC Med Genet. 2008;1:55.

    Google Scholar 

  86. Hegmans JP, Veltman JD, Fung ET, et al. Protein profiling of pleural effusions to identify malignant pleural mesothelioma using SELDI-TOF MS. Technol Cancer Res Treat. 2009;8:323–32.

    CAS  PubMed  Google Scholar 

  87. Ou WB, Corson JM, Flynn DL, et al. AXL regulates mesothelioma proliferation and invasiveness. Oncogene. 2011;30:1643–52.

    CAS  PubMed  Google Scholar 

  88. van der Bij S, Schaake E, Koffijberg H, et al. Markers for the non-invasive diagnosis of mesothelioma: a systematic review. Br J Cancer. 2011;104:1325–33.

    PubMed Central  PubMed  Google Scholar 

  89. Henzi T, Blum WV, Pfefferli M, et al. SV40-induced expression of calretinin protects mesothelial cells from asbestos cytotoxicity and may be a key factor contributing to mesothelioma pathogenesis. Am J Pathol. 2009;174:2324–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Ordonez NG. What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum Pathol. 2007;38:1–16.

    CAS  PubMed  Google Scholar 

  91. Travis WD. Sarcomatoid neoplasms of the lung and pleura. Arch Pathol Lab Med. 2010;134:1645–58.

    PubMed  Google Scholar 

  92. Klebe S, Mahar A, Henderson DW, Roggli VL. Malignant mesothelioma with heterologous elements: clinicopathological correlation of 27 cases and literature review. Mod Pathol. 2008;21:1084–94.

    PubMed  Google Scholar 

  93. Su XY, Li GD, Liu WP, Xie B, Jiang YH. Cytological differential diagnosis among adenocarcinoma, epithelial mesothelioma, and reactive mesothelial cells in serous effusions by immunocytochemistry. Diagn Cytopathol. 2011;39:900–8.

    PubMed  Google Scholar 

  94. Hasteh F, Lin GY, Weidner N, Michael CW. The use of immunohistochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118:90–6.

    PubMed  Google Scholar 

  95. Marchevsky AM. Application of immunohistochemistry to the diagnosis of malignant mesothelioma. Arch Pathol Lab Med. 2008;132:397–401.

    PubMed  Google Scholar 

  96. Yuan Y, Nymoen DA, Stavnes HT, et al. Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol. 2009;33:1673–82.

    PubMed Central  PubMed  Google Scholar 

  97. Husain AN, Colby TV, Ordonez NG, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: a consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2009;133:1317–31.

    PubMed  Google Scholar 

  98. Maeda M, Hino O. Molecular tumor markers for asbestos-related mesothelioma: serum diagnostic markers. Pathol Int. 2006;56:649–54.

    CAS  PubMed  Google Scholar 

  99. Yamaguchi N, Hattori K, Oh-eda M, et al. A novel cytokine exhibiting megakaryocyte potentiating activity from a human pancreatic tumor cell line HPC-Y5. J Biol Chem. 1994;269:805–8.

    CAS  PubMed  Google Scholar 

  100. Scholler N, Fu N, Yang Y, et al. Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma. Proc Natl Acad Sci U S A. 1999;96:11531–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Robinson BW, Creaney J, Lake R, et al. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet. 2003;362:1612–6.

    CAS  PubMed  Google Scholar 

  102. Shiomi K, Miyamoto H, Segawa T, et al. Novel ELISA system for detection of N-ERC/mesothelin in the sera of mesothelioma patients. Cancer Sci. 2006;97:928–32.

    CAS  PubMed  Google Scholar 

  103. Segawa T, Hagiwara Y, Ishikawa K, et al. MESOMARK kit detects C-ERC/mesothelin, but not SMRP with C-terminus. Biochem Biophys Res Commun. 2008;369:915–8.

    CAS  PubMed  Google Scholar 

  104. Shiomi K, Hagiwara Y, Sonoue K, et al. Sensitive and specific new enzyme-linked immunosorbent assay for N-ERC/mesothelin increases its potential as a useful serum tumor marker for mesothelioma. Clin Cancer Res. 2008;14:1431–7.

    CAS  PubMed  Google Scholar 

  105. Hassan R, Remaley AT, Sampson ML, et al. Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Clin Cancer Res. 2006;12:447–53.

    CAS  PubMed  Google Scholar 

  106. Creaney J, Yeoman D, Musk AW, et al. Plasma versus serum levels of osteopontin and mesothelin in patients with malignant mesothelioma-which is best? Lung Cancer. 2011;74:55–60.

    PubMed  Google Scholar 

  107. Hollevoet K, Nackaerts K, Thimpont J, et al. Diagnostic performance of soluble mesothelin and megakaryocyte potentiating factor in mesothelioma. Am J Respir Crit Care Med. 2010;181:620–5.

    CAS  PubMed  Google Scholar 

  108. Hollevoet K, Van Cleemput J, Thimpont J, et al. Serial measurements of mesothelioma serum biomarkers in asbestos-exposed individuals: a prospective longitudinal cohort study. J Thorac Oncol. 2011;6:889–95.

    PubMed  Google Scholar 

  109. Boudville N, Paul R, Robinson BW, Creaney J. Mesothelin and kidney function-analysis of relationship and implications for mesothelioma screening. Lung Cancer. 2011;73:320–4.

    PubMed  Google Scholar 

  110. Park EK, Sandrini A, Yates DH, et al. Soluble mesothelin-related protein in an asbestos-exposed population: the dust diseases board cohort study. Am J Respir Crit Care Med. 2008;178:832–7.

    CAS  PubMed  Google Scholar 

  111. Weber DG, Johnen G, Taeger D, et al. Assessment of confounding factors affecting the tumor markers SMRP, CA125, and CYFRA21-1 in serum. Biomark Insights. 2010;5:1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Creaney J, Robinson BW. Serum and pleural fluid biomarkers for mesothelioma. Curr Opin Pulm Med. 2009;15:366–70.

    CAS  PubMed  Google Scholar 

  113. Luo L, Shi H-Z, Liang Q-L, et al. Diagnostic value of soluble mesothelin-related peptides for malignant mesothelioma: a meta-analysis. Respir Med. 2010;104:149–56.

    PubMed  Google Scholar 

  114. Gube M, Taeger D, Weber DG, et al. Performance of biomarkers SMRP, CA125, and CYFRA 21-1 as potential tumor markers for malignant mesothelioma and lung cancer in a cohort of workers formerly exposed to asbestos. Arch Toxicol. 2011;85:185–92.

    CAS  PubMed  Google Scholar 

  115. Grigoriu BD, Scherpereel A, Devos P, et al. Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res. 2007;13:2928–35.

    CAS  PubMed  Google Scholar 

  116. Creaney J, Francis RJ, Dick IM, et al. Serum soluble mesothelin concentrations in malignant pleural mesothelioma: relationship to tumor volume, clinical stage and changes in tumor burden. Clin Cancer Res. 2011;17:1181–9.

    CAS  PubMed  Google Scholar 

  117. Wheatley-Price P, Yang B, Patsios D, et al. Soluble mesothelin-related peptide and osteopontin as markers of response in malignant mesothelioma. J Clin Oncol. 2010;28:3316–22.

    PubMed  Google Scholar 

  118. Tajima K, Hirama M, Shiomi K, et al. ERC/mesothelin as a marker for chemotherapeutic response in patients with mesothelioma. Anticancer Res. 2008;28:3933–6.

    CAS  PubMed  Google Scholar 

  119. Dipalma N, Luisi V, Di Serio F, et al. Biomarkers in malignant mesothelioma: diagnostic and prognostic role of soluble mesothelin-related peptide. Int J Biol Markers. 2011;26:160–5.

    CAS  PubMed  Google Scholar 

  120. Pass HI, Lott D, Lonardo F, et al. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med. 2005;353:1564–73.

    CAS  PubMed  Google Scholar 

  121. Sabo-Attwood T, Ramos-Nino ME, Eugenia-Ariza M, et al. Osteopontin modulates inflammation, mucin production, and gene expression signatures after inhalation of asbestos in a murine model of fibrosis. Am J Pathol. 2011;178:1975–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Park EK, Thomas PS, Johnson AR, Yates DH. Osteopontin levels in an asbestos-exposed population. Clin Cancer Res. 2009;15:1362–6.

    CAS  PubMed  Google Scholar 

  123. Cristaudo A, Foddis R, Bonotti A, et al. Comparison between plasma and serum osteopontin levels: usefulness in diagnosis of epithelial malignant pleural mesothelioma. Int J Biol Markers. 2010;25:164–70.

    CAS  PubMed  Google Scholar 

  124. Mastrangelo G, Marangi G, Ballarin MN, et al. Osteopontin, asbestos exposure and pleural plaques: a cross-sectional study. BMC Public Health. 2011;11:220.

    PubMed Central  PubMed  Google Scholar 

  125. Constantinescu D, Vornicu M, Grigoriu C, Cozmei C, Grigoriu BD. Assaying for circulating osteopontin in practice: a technical note. Eur Respir J. 2010;35:1187–8.

    CAS  PubMed  Google Scholar 

  126. Creaney J, Yeoman D, Demelker Y, et al. Comparison of osteopontin, megakaryocyte potentiating factor, and mesothelin proteins as markers in the serum of patients with malignant mesothelioma. J Thorac Oncol. 2008;3:851–7.

    PubMed  Google Scholar 

  127. Cappia S, Righi L, Mirabelli D, et al. Prognostic role of osteopontin expression in malignant pleural mesothelioma. Am J Clin Pathol. 2008;130:58–64.

    PubMed  Google Scholar 

  128. Hedman M, Arnberg H, Wernlund J, Riska H, Brodin O. Tissue polypeptide antigen (TPA), hyaluronan and CA 125 as serum markers in malignant mesothelioma. Anticancer Res. 2003;23:531–6.

    CAS  PubMed  Google Scholar 

  129. Schouwink H, Korse CM, Bonfrer JM, Hart AA, Baas P. Prognostic value of the serum tumour markers Cyfra 21-1 and tissue polypeptide antigen in malignant mesothelioma. Lung Cancer. 1999;25:25–32.

    CAS  PubMed  Google Scholar 

  130. Martensson G, Thylen A, Lindquist U, Hjerpe A. The sensitivity of hyaluronan analysis of pleural fluid from patients with malignant mesothelioma and a comparison of different methods. Cancer. 1994;73:1406–10.

    CAS  PubMed  Google Scholar 

  131. Grigoriu B, Chahine B, Zerimech F, et al. Serum mesothelin has a higher diagnostic utility than hyaluronic acid in malignant mesothelioma. Clin Biochem. 2009;42:1046–50.

    CAS  PubMed  Google Scholar 

  132. Fiorelli A, Vicidomini G, Di Domenico M, et al. Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 2011;12:420–4.

    PubMed  Google Scholar 

  133. Hirayama N, Tabata C, Tabata R, et al. Pleural effusion VEGF levels as a prognostic factor of malignant pleural mesothelioma. Respir Med. 2011;105:137–42.

    PubMed  Google Scholar 

  134. Amati M, Tomasetti M, Mariotti L, et al. Assessment of biomarkers in asbestos-exposed workers as indicators of cancer risk. Mut Res/Genet Toxicol Environ Mutag. 2008;655:52–8.

    CAS  Google Scholar 

  135. Attanoos RL, Griffin A, Gibbs AR. The use of immunohistochemistry in distinguishing reactive from neoplastic mesothelium. A novel use for desmin and comparative evaluation with epithelial membrane antigen, p53, platelet-derived growth factor-receptor, P-glycoprotein and Bcl-2. Histopathology. 2003;43:231–8.

    CAS  PubMed  Google Scholar 

  136. Ascoli V, Scalzo CC, Facciolo F, Nardi F. Platelet-derived growth factor receptor immunoreactivity in mesothelioma and nonneoplastic mesothelial cells in serous effusions. Acta Cytol. 1995;39:613–22.

    CAS  PubMed  Google Scholar 

  137. Filiberti R, Marroni P, Neri M, et al. Serum PDGF-AB in pleural mesothelioma. Tumour Biol. 2005;26:221–6.

    CAS  PubMed  Google Scholar 

  138. Gueugnon F, Leclercq S, Blanquart C, et al. Identification of novel markers for the diagnosis of malignant pleural mesothelioma. Am J Pathol. 2011;178:1033–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Tanaka S, Choe N, Iwagaki A, Hemenway DR, Kagan E. Asbestos exposure induces MCP-1 secretion by pleural mesothelial cells. Exp Lung Res. 2000;26:241–55.

    CAS  PubMed  Google Scholar 

  140. Dragonieri S, van der Schee MP, Massaro T, et al. An electronic nose distinguishes exhaled breath of patients with malignant pleural mesothelioma from controls. Lung Cancer. 2012;75:326–31.

    PubMed  Google Scholar 

  141. de Gennaro G, Dragonieri S, Longobardi F, et al. Chemical characterization of exhaled breath to differentiate between patients with malignant pleural mesothelioma from subjects with similar professional asbestos exposure. Anal Bioanal Chem. 2010;398:3043–50.

    PubMed  Google Scholar 

  142. Chapman EA, Thomas PS, Yates DH. Breath analysis in asbestos-related disorders: a review of the literature and potential future applications. J Breath Res. 2010;4:034001.

    PubMed  Google Scholar 

  143. Baudis M, et al. Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics. 2001;17(12):1228–9.

    CAS  PubMed  Google Scholar 

  144. Sebova K, Fridrichova I. Epigenetic tools in potential anticancer therapy. Anticancer Drugs. 2010;21:565–77.

    Google Scholar 

  145. Carbone M, Yang H, Pass HI, et al. BAP1 and Cancer. Nat Rev Cancer. 2013;13:(3):153–59.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Tarja Nieminen for helping with the figures and editing as well as to MD, PhD Ewen MacDonald for the correction of grammar and style. Financial support from the Finnish Work Environment Fund (grants 110405 and 111100) and from the Sigrid Jusélius Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakari Knuutila PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kettunen, E., Knuutila, S. (2014). Malignant Mesothelioma: Molecular Markers. In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, London. https://doi.org/10.1007/978-1-4471-2825-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2825-0_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2824-3

  • Online ISBN: 978-1-4471-2825-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics